Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Research (Wash D C) ; 7: 0355, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694202

RESUMEN

Proper timing of vigilance states serves fundamental brain functions. Although disturbance of sleep onset rapid eye movement (SOREM) sleep is frequently reported after orexin deficiency, their causal relationship still remains elusive. Here, we further study a specific subgroup of orexin neurons with convergent projection to the REM sleep promoting sublaterodorsal tegmental nucleus (OXSLD neurons). Intriguingly, although OXSLD and other projection-labeled orexin neurons exhibit similar activity dynamics during REM sleep, only the activation level of OXSLD neurons exhibits a significant positive correlation with the post-inter-REM sleep interval duration, revealing an essential role for the orexin-sublaterodorsal tegmental nucleus (SLD) neural pathway in relieving REM sleep pressure. Monosynaptic tracing reveals that multiple inputs may help shape this REM sleep-related dynamics of OXSLD neurons. Genetic ablation further shows that the homeostatic architecture of sleep/wakefulness cycles, especially avoidance of SOREM sleep-like transition, is dependent on this activity. A positive correlation between the SOREM sleep occurrence probability and depression states of narcoleptic patients further demonstrates the possible significance of the orexin-SLD pathway on REM sleep homeostasis.

2.
Nat Commun ; 15(1): 2722, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548744

RESUMEN

Enhancement of wakefulness is a prerequisite for adaptive behaviors to cope with acute stress, but hyperarousal is associated with impaired behavioral performance. Although the neural circuitries promoting wakefulness in acute stress conditions have been extensively identified, less is known about the circuit mechanisms constraining wakefulness to prevent hyperarousal. Here, we found that chemogenetic or optogenetic activation of GAD2-positive GABAergic neurons in the midbrain dorsal raphe nucleus (DRNGAD2) decreased wakefulness, while inhibition or ablation of these neurons produced an increase in wakefulness along with hyperactivity. Surprisingly, DRNGAD2 neurons were paradoxically wakefulness-active and were further activated by acute stress. Bidirectional manipulations revealed that DRNGAD2 neurons constrained the increase of wakefulness and arousal level in a mouse model of stress. Circuit-specific investigations demonstrated that DRNGAD2 neurons constrained wakefulness via inhibition of the wakefulness-promoting paraventricular thalamus. Therefore, the present study identified a wakefulness-constraining role DRNGAD2 neurons in acute stress conditions.


Asunto(s)
Núcleo Dorsal del Rafe , Vigilia , Ratones , Animales , Vigilia/fisiología , Núcleo Dorsal del Rafe/fisiología , Nivel de Alerta/fisiología , Mesencéfalo , Neuronas GABAérgicas/fisiología
3.
Anal Chem ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334074

RESUMEN

Chemoresistance to triple-negative breast cancer (TNBC) is a critical issue in clinical practice. Lipid metabolism takes a unique role in breast cancer cells; especially, unsaturated lipids involving cell membrane fluidity and peroxidation are highly remarked. At present, for the lack of a high-resolution molecular recognition platform at the single-cell level, it is still hard to systematically study chemoresistance heterogeneity based on lipid unsaturation proportion. By designing a single-cell mass spectrometry workflow based on CyESI-MS, we profiled the unsaturated lipids of TNBC cells to evaluate lipidomic remodeling under platinum stress. Profiling revealed the heterogeneity of the polyunsaturated lipid proportion of TNBC cells under cisplatin treatment. A cluster of cells identified by polyunsaturated lipid accumulation was found to be involved in platinum sensitivity. Furthermore, we found that the chemoresistance of TNBC cells could be regulated by fatty acid supplementation, which determinates the composition of unsaturated lipids. These discoveries provide insights for monitoring and controlling cellular unsaturated lipid proportions to overcome chemoresistance in breast cancer.

4.
Neuron ; 112(1): 155-173.e8, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37944520

RESUMEN

The hypocretin (Hcrt) (also known as orexin) neuropeptidic wakefulness-promoting system is implicated in the regulation of spatial memory, but its specific role and mechanisms remain poorly understood. In this study, we revealed the innervation of the medial entorhinal cortex (MEC) by Hcrt neurons in mice. Using the genetically encoded G-protein-coupled receptor activation-based Hcrt sensor, we observed a significant increase in Hcrt levels in the MEC during novel object-place exploration. We identified the function of Hcrt at presynaptic glutamatergic terminals, where it recruits fast-spiking parvalbumin-positive neurons and promotes gamma oscillations. Bidirectional manipulations of Hcrt neurons' projections from the lateral hypothalamus (LHHcrt) to MEC revealed the essential role of this pathway in regulating object-place memory encoding, but not recall, through the modulation of gamma oscillations. Our findings highlight the significance of the LHHcrt-MEC circuitry in supporting spatial memory and reveal a unique neural basis for the hypothalamic regulation of spatial memory.


Asunto(s)
Hipotálamo , Memoria Espacial , Ratones , Animales , Orexinas/metabolismo , Hipotálamo/metabolismo , Neuronas/fisiología , Área Hipotalámica Lateral/fisiología
6.
Hum Brain Mapp ; 44(16): 5387-5401, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37605831

RESUMEN

Gene expression plays a critical role in the pathogenesis of Parkinson's disease (PD). How gene expression profiles are correlated with functional-metabolic architecture remains obscure. We enrolled 34 PD patients and 25 age-and-sex-matched healthy controls for simultaneous 18 F-FDG-PET/functional MRI scanning during resting state. We investigated the functional gradients and the ratio of standard uptake value. Principal component analysis was used to further combine the functional gradients and glucose metabolism into functional-metabolic architecture. Using partial least squares (PLS) regression, we introduced the transcriptomic data from the Allen Institute of Brain Sciences to identify gene expression patterns underlying the affected functional-metabolic architecture in PD. Between-group comparisons revealed significantly higher gradient variation in the visual, somatomotor, dorsal attention, frontoparietal, default mode, and subcortical network (pFDR < .048) in PD. Increased FDG-uptake was found in the somatomotor and ventral attention network while decreased FDG-uptake was found in the visual network (pFDR < .008). Spatial correlation analysis showed consistently affected patterns of functional gradients and metabolism (p = 2.47 × 10-8 ). PLS analysis and gene ontological analyses further revealed that genes were mainly enriched for metabolic, catabolic, cellular response to ions, and regulation of DNA transcription and RNA biosynthesis. In conclusion, our study provided genetic pathological mechanism to explain imaging-defined brain functional-metabolic architecture of PD.


Asunto(s)
Fluorodesoxiglucosa F18 , Enfermedad de Parkinson , Humanos , Fluorodesoxiglucosa F18/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Encéfalo/patología , Neuroimagen , Imagen por Resonancia Magnética , Expresión Génica
7.
Chem Sci ; 14(22): 5945-5955, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37293662

RESUMEN

Chemical modifications of CRISPR-Cas nucleases help decrease off-target editing and expand the biomedical applications of CRISPR-based gene manipulation tools. Here, we found that epigenetic modifications of guide RNA, such as m6A and m1A methylation, can effectively inhibit both the cis- and trans-DNA cleavage activities of CRISPR-Cas12a. The underlying mechanism is that methylations destabilize the secondary and tertiary structure of gRNA which prevents the assembly of the Cas12a-gRNA nuclease complex, leading to decreased DNA targeting ability. A minimum of three adenine methylated nucleotides are required to completely inhibit the nuclease activity. We also demonstrate that these effects are reversible through the demethylation of gRNA by demethylases. This strategy has been used in the regulation of gene expression, demethylase imaging in living cells and controllable gene editing. The results demonstrate that the methylation-deactivated and demethylase-activated strategy is a promising tool for regulation of the CRISPR-Cas12a system.

8.
Front Neurol ; 14: 1116382, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051055

RESUMEN

Background: For patients of primary brainstem hemorrhage (PBH), it is crucial to find a method that can quickly and accurately predict the correlation between status of consciousness and PBH. Objective: To analyze the value of computer tomography (CT) signs in combination with artificial intelligence (AI) technique in predicting the correlation between status of consciousness and PBH. Methods: A total of 120 patients with PBH were enrolled from August 2011 to March 2021 according to the criteria. Patients were divided into three groups [consciousness, minimally conscious state (MCS) and coma] based on the status of consciousness. Then, first, Mann-Whitney U test and Spearman rank correlation test were used on the factors: gender, age, stages of intracerebral hemorrhage, CT signs with AI or radiology physicians, hemorrhage involving the midbrain or ventricular system. We collected hemorrhage volumes and mean CT values with AI. Second, those significant factors were screened out by the Mann-Whitney U test and those highly or moderately correlated by Spearman's rank correlation test, and a further ordinal multinomial logistic regression analysis was performed to find independent predictors of the status of consciousness. At last, receiver operating characteristic (ROC) curves were drawn to calculate the hemorrhage volume for predictively assessing the status of consciousness. Results: Preliminary meaningful variables include hemorrhage involving the midbrain or ventricular system, hemorrhage volume, grade of hematoma shape and density, and CT value from Mann-Whitney U test and Spearman rank correlation test. It is further shown by ordinal multinomial logistic regression analysis that hemorrhage volume and hemorrhage involving the ventricular system are two major predictors of the status of consciousness. It showed from ROC that the hemorrhage volumes of <3.040 mL, 3.040 ~ 6.225 mL and >6.225 mL correspond to consciousness, MCS or coma, respectively. If the hemorrhage volume is the same, hemorrhage involving the ventricular system should be correlated with more severe disorders of consciousness (DOC). Conclusion: CT signs combined with AI can predict the correlation between status of consciousness and PBH. Hemorrhage volume and hemorrhage involving the ventricular system are two independent factors, with hemorrhage volume in particular reaching quantitative predictions.

9.
Adv Sci (Weinh) ; 10(15): e2300189, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961096

RESUMEN

Sevoflurane has been the most widely used inhaled anesthetics with a favorable recovery profile; however, the precise mechanisms underlying its anesthetic action are still not completely understood. Here the authors show that sevoflurane activates a cluster of urocortin 1 (UCN1+ )/cocaine- and amphetamine-regulated transcript (CART+ ) neurons in the midbrain involved in its anesthesia. Furthermore, growth hormone secretagogue receptor (GHSR) is highly enriched in sevoflurane-activated UCN1+ /CART+ cells and is necessary for sleep induction. Blockade of GHSR abolishes the excitatory effect of sevoflurane on UCN1+ /CART+ neurons and attenuates its anesthetic effect. Collectively, their data suggest that anesthetic action of sevoflurane necessitates the GHSR activation in midbrain UCN1+ /CART+ neurons, which provides a novel target including the nucleus and receptor in the field of anesthesia.


Asunto(s)
Anestesia , Mesencéfalo , Sevoflurano/farmacología , Urocortinas , Sueño
10.
Cereb Cortex ; 33(6): 3026-3042, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35764255

RESUMEN

Ventromedial prefrontal cortex (vmPFC) processes many critical brain functions, such as decision-making, value-coding, thinking, and emotional arousal/recognition, but whether vmPFC plays a role in sleep-wake promotion circuitry is still unclear. Here, we find that photoactivation of dorsomedial hypothalamus (DMH)-projecting vmPFC neurons, their terminals, or their postsynaptic DMH neurons rapidly switches non-rapid eye movement (NREM) but not rapid eye movement sleep to wakefulness, which is blocked by photoinhibition of DMH outputs in lateral hypothalamus (LHs). Chemoactivation of DMH glutamatergic but not GABAergic neurons innervated by vmPFC promotes wakefulness and suppresses NREM sleep, whereas chemoinhibition of vmPFC projections in DMH produces opposite effects. DMH-projecting vmPFC neurons are inhibited during NREM sleep and activated during wakefulness. Thus, vmPFC neurons innervating DMH likely represent the first identified set of cerebral cortical neurons for promotion of physiological wakefulness and suppression of NREM sleep.


Asunto(s)
Sueño REM , Sueño , Sueño/fisiología , Sueño REM/fisiología , Nivel de Alerta , Vigilia/fisiología , Neuronas GABAérgicas/fisiología
11.
Cell Rep ; 41(11): 111824, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516774

RESUMEN

Heightened wakefulness in response to stressors is essential for survival but can also lead to sleep disorders like insomnia. The paraventricular thalamus (PVT) is both a critical thalamic area for wakefulness and a stress-sensitive brain region. However, whether the PVT and its neural circuitries are involved in controlling wakefulness in stress conditions remains unknown. Here, we find that PVT neurons projecting to the central amygdala (CeA) are activated by different stressors. These neurons are wakefulness-active and increase their activities upon sleep to wakefulness transitions. Optogenetic activation of the PVT-CeA circuit evokes transitions from sleep to wakefulness, whereas selectively silencing the activity of this circuit decreases time spent in wakefulness. Specifically, chemogenetic inhibition of CeA-projecting PVT neurons not only alleviates stress responses but also attenuates the acute stress-induced increase of wakefulness. Thus, our results demonstrate that the PVT-CeA circuit controls physiological wakefulness and modulates acute stress-induced heightened wakefulness.


Asunto(s)
Núcleo Amigdalino Central , Vigilia , Tálamo/fisiología , Optogenética , Neuronas/fisiología , Vías Nerviosas/fisiología
12.
Anal Chem ; 94(42): 14627-14634, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36226357

RESUMEN

Existing nucleic acid and antigen profiling methods for COVID-19 diagnosis fail to simultaneously meet the demands in sensitivity and detection speed, hampering them from being a comprehensive way for epidemic prevention and control. Thus, effective screening of COVID-19 requires a simple, fast, and sensitive method. Here, we report a rapid assay for ultrasensitive and highly specific profiling of COVID-19 associated antigen. The assay is based on a binding-induced DNA assembly on a nanoparticle scaffold that acts by fluorescence translation. By binding two aptamers to a target protein, the protein brings the DNA regions into close proximity, forming closed-loop conformation and resulting in the formation of the fluorescence translator. Using this assay, saliva nucleocapsid protein (N protein) has been profiled quantitatively by converting the N protein molecule information into a fluorescence signal. The fluorescence intensity is enhanced with increasing N protein concentration caused by the metal enhanced fluorescence using a simple, specific, and fast profiling assay within 3 min. On this basis, the assay enables a high recognition ratio and a limit of detection down to 150 fg mL-1. It is 1-2 orders of magnitude lower than existing commercial antigen ELISA kits, which is comparative to or superior than the PCR based nucleic acid testing. Owing to its rapidity, ultrasensitivity, as well as easy operation, it holds great promise as a tool for screening of COVID-19 and other epidemics such as monkey pox.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de COVID-19 , Proteínas de la Nucleocápside/análisis , Sensibilidad y Especificidad
13.
Neuron ; 110(23): 4000-4014.e6, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36272414

RESUMEN

The hippocampal CA2 region plays a key role in social memory. The encoding of such memory involves afferent activity from the hypothalamic supramammillary nucleus (SuM) to CA2. However, the neuronal circuits required for consolidation of freshly encoded social memory remain unknown. Here, we used circuit-specific optical and single-cell electrophysiological recordings in mice to explore the role of sleep in social memory consolidation and its underlying circuit mechanism. We found that SuM neurons projecting to CA2 were highly active during rapid-eye-movement (REM) sleep but not during non-REM sleep or quiet wakefulness. REM-sleep-selective optogenetic silencing of these neurons impaired social memory. By contrast, the silencing of another group of REM sleep-active SuM neurons that projects to the dentate gyrus had no effect on social memory. Therefore, we provide causal evidence that the REM sleep-active hypothalamic neurons that project to CA2 are specifically required for the consolidation of social memory.


Asunto(s)
Consolidación de la Memoria , Animales , Ratones , Sueño
14.
J Neurosci ; 42(44): 8343-8360, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36167784

RESUMEN

Although recent studies have revealed an involvement of hippocampal interneurons in learning the association among time-separated events, its underlying cellular mechanisms remained not fully clarified. Here, we combined multichannel recording and optogenetics to elucidate how the hippocampal parvalbumin-expressing interneurons (PV-INs) support associative learning. To address this issue, we trained the mice (both sexes) to learn hippocampus-dependent trace eyeblink conditioning (tEBC) in which they associated a light flash conditioned stimulus (CS) with a corneal air puff unconditioned stimuli (US) separated by a 250 ms time interval. We found that the hippocampal PV-INs exhibited learning-associated sustained activity at the early stage of tEBC acquisition. Moreover, the PV-IN sustained activity was positively correlated with the occurrence of conditioned eyeblink responses at the early learning stage. Suppression of the PV-IN sustained activity impaired the acquisition of tEBC, whereas the PV-IN activity suppression had no effect on the acquisition of delay eyeblink conditioning, a hippocampus-independent learning task. Learning-associated augmentation in the excitatory pyramidal cell-to-PVIN drive may contribute to the formation of PV-IN sustained activity. Suppression of the PV-IN sustained activity disrupted hippocampal gamma but not theta band oscillation during the CS-US interval period. Gamma frequency (40 Hz) activation of the PV-INs during the CS-US interval period facilitated the acquisition of tEBC. Our current findings highlight the involvement of hippocampal PV-INs in tEBC acquisition and reveal insights into the PV-IN activity kinetics which are of key importance for the hippocampal involvement in associative learning.SIGNIFICANCE STATEMENT The cellular mechanisms underlying associative learning have not been fully clarified. Previous studies focused on the involvement of hippocampal pyramidal cells in associative learning, whereas the activity and function of hippocampal interneurons were largely neglected. We herein demonstrated the hippocampal PV-INs exhibited learning-associated sustained activity, which was required for the acquisition of tEBC. Furthermore, we showed evidence that the PV-IN sustained activity might have arisen from the learning-associated augmentation in excitatory pyramidal cell-to-PVIN drive and contributed to learning-associated augmentation in gamma band oscillation during tEBC acquisition. Our findings provide more mechanistic understanding of the cellular mechanisms underlying the hippocampal involvement in associative learning.


Asunto(s)
Condicionamiento Palpebral , Parvalbúminas , Masculino , Femenino , Ratones , Animales , Condicionamiento Palpebral/fisiología , Interneuronas , Hipocampo/fisiología , Parpadeo
16.
Cereb Cortex ; 32(4): 824-838, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34383018

RESUMEN

Sleep deprivation (SD) causes deficits in off-line memory consolidation, but the underlying network oscillation mechanisms remain unclear. Hippocampal sharp wave ripple (SWR) oscillations play a critical role in off-line memory consolidation. Therefore, we trained mice to learn a hippocampus-dependent trace eyeblink conditioning (tEBC) task and explored the influence of 1.5-h postlearning SD on hippocampal SWRs and related spike dynamics during recovery sleep. We found an increase in hippocampal SWRs during postlearning sleep, which predicted the consolidation of tEBC in conditioned mice. In contrast, sleep-deprived mice showed a loss of tEBC learning-induced increase in hippocampal SWRs during recovery sleep. Moreover, the sleep-deprived mice exhibited weaker reactivation of tEBC learning-associated pyramidal cells in hippocampal SWRs during recovery sleep. In line with these findings, tEBC consolidation was impaired in sleep-deprived mice. Furthermore, sleep-deprived mice showed augmented fast excitation from pyramidal cells to interneurons and enhanced participation of interneurons in hippocampal SWRs during recovery sleep. Among various interneurons, parvalbumin-expressing interneurons specifically exhibited overexcitation during hippocampal SWRs. Our findings suggest that altered hippocampal SWRs and associated spike dynamics during recovery sleep may be candidate network oscillation mechanisms underlying SD-induced memory deficits.


Asunto(s)
Hipocampo , Privación de Sueño , Animales , Hipocampo/fisiología , Ratones , Parvalbúminas/metabolismo , Células Piramidales/fisiología , Sueño
17.
J Am Chem Soc ; 143(31): 12361-12368, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34324318

RESUMEN

The tool box of site-specific cleavage for nucleic acid has been an increasingly attractive subject. Especially, the recent emergence of the orthogonally activatable DNA device is closely related to the site-specific scission. However, most of these cleavage strategies are based on exogenous assistance, such as laser irradiation. Endogenous strategies are highly desirable for the orthogonally regulatable DNA machine to explore the crucial intracellular biological process and cell signal network. Here, we found that the accurate site-specific cleavage reaction of phosphorothioate (PT) modified DNA by using myeloperoxidase (MPO). A scissors-like mechanism by which MPO breaks PT modification through chloride oxidation has been revealed. Furthermore, we have successfully applied the scissors to activate PT-modified hairpin-DNA machines to produce horseradish peroxidase (HRP)-mimicking DNAzyme or initiate hybridization chain reaction (HCR) amplification. Since MPO plays an important role in the pathway related to oxidative stress in cells, through the HCR amplification activated by this tool box, the oxidative stress in living cells has been robustly imaged. This work proposes an accurate and endogenous site-specific cleavage tool for the research of biostimuli and the construction of DNA molecular devices.


Asunto(s)
ADN/metabolismo , Peroxidasa/metabolismo , Fosfatos/metabolismo , ADN/química , Humanos , Peroxidasa/química , Fosfatos/química
18.
Neurosci Bull ; 37(8): 1147-1159, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33991316

RESUMEN

While the hippocampus has been implicated in supporting the association among time-separated events, the underlying cellular mechanisms have not been fully clarified. Here, we combined in vivo multi-channel recording and optogenetics to investigate the activity of hippocampal interneurons in freely-moving mice performing a trace eyeblink conditioning (tEBC) task. We found that the hippocampal interneurons exhibited conditioned stimulus (CS)-evoked sustained activity, which predicted the performance of conditioned eyeblink responses (CRs) in the early acquisition of the tEBC. Consistent with this, greater proportions of hippocampal pyramidal cells showed CS-evoked decreased activity in the early acquisition of the tEBC. Moreover, optogenetic suppression of the sustained activity in hippocampal interneurons severely impaired acquisition of the tEBC. In contrast, suppression of the sustained activity of hippocampal interneurons had no effect on the performance of well-learned CRs. Our findings highlight the role of hippocampal interneurons in the tEBC, and point to a potential cellular mechanism subserving associative learning.


Asunto(s)
Condicionamiento Palpebral , Animales , Parpadeo , Condicionamiento Clásico , Hipocampo , Interneuronas , Ratones , Células Piramidales
19.
Mol Psychiatry ; 26(10): 5568-5577, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32681097

RESUMEN

It is traditionally believed that cerebral amyloid-beta (Aß) deposits are derived from the brain itself in Alzheimer's disease (AD). Peripheral cells such as blood cells also produce Aß. The role of peripherally produced Aß in the pathogenesis of AD remains unknown. In this study, we established a bone marrow transplantation model to investigate the contribution of blood cell-produced Aß to AD pathogenesis. We found that bone marrow cells (BMCs) transplanted from APPswe/PS1dE9 transgenic mice into wild-type (Wt) mice at 3 months of age continuously expressed human Aß in the blood, and caused AD phenotypes including Aß plaques, cerebral amyloid angiopathy (CAA), tau hyperphosphorylation, neuronal degeneration, neuroinflammation, and behavioral deficits in the Wt recipient mice at 12 months after transplantation. Bone marrow reconstitution in APPswe/PS1dE9 mice with Wt-BMCs at 3 months of age reduced blood Aß levels, and alleviated brain Aß burden, neuronal degeneration, neuroinflammation, and behavioral deficits in the AD model mice at 12 months after transplantation. Our study demonstrated that blood cell-produced Aß plays a significant role in AD pathogenesis, and the elimination of peripheral production of Aß can decrease brain Aß deposition and represents a novel therapeutic approach for AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Células Sanguíneas/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos
20.
Nat Commun ; 11(1): 4910, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978405

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA