Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
Front Oncol ; 14: 1332528, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725621

RESUMEN

Long non-coding RNAs (lncRNAs) are multifunctional and participate in a variety of biological processes and gene regulatory networks. The deregulation of lncRNAs has been extensively implicated in diverse human diseases, especially in cancers. Overwhelming evidence demonstrates that lncRNAs are essential to the pathophysiological processes of ovarian cancer (OC), acting as regulators involved in metastasis, cell death, chemoresistance, and tumor immunity. In this review, we illustrate the expanded functions of lncRNAs in the initiation and progression of OC and elaborate on the signaling pathways in which they pitch. Additionally, the potential clinical applications of lncRNAs as biomarkers in the diagnosis and treatment of OC were emphasized, cementing the bridge of communication between clinical practice and basic research.

2.
Vaccine ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38796326

RESUMEN

We conducted a phase I, randomized, double-blind, placebo-controlled trial including healthy adults in Sui County, Henan Province, China. Ninety-six adults were randomly assigned to one of three groups (high-dose, medium-dose, and low-dose) at a 3:1 ratio to receive one vaccine dose or placebo. Adverse events up to 28 days after each dose and serious adverse events up to 6 months after all doses were reported. Geometric mean titers and seroconversion rates were measured for anti-rotavirus neutralizing antibodies using microneutralization tests. The rates of total adverse events in the placebo group, low-dose group, medium-dose group, and high-dose group were 29.17 % (12.62 %-51.09 %), 12.50 % (2.66 %-32.36 %), 50.00 % (29.12 %-70.88 %), and 41.67 % (22.11 %-63.36 %), respectively, with no significant difference in the experimental groups compared with the placebo group. The results of the neutralizing antibody assay showed that in the adult group, the neutralizing antibody geometric mean titer at 28 days after full immunization in the low-dose group was 583.01 (95 % confidence interval [CI]: 447.12-760.20), that in the medium-dose group was 899.34 (95 % CI: 601.73-1344.14), and that in the high-dose group was 1055.24 (95 % CI: 876.28-1270.75). The GMT of serum-specific IgG at 28 days after full immunization in the low-dose group was 3444.26 (95 % CI: 2292.35-5175.02), that in the medium-dose group was 6888.55 (95 % CI: 4426.67-10719.6), and that in the high-dose group was 7511.99 (95 % CI: 3988.27-14149.0). The GMT of serum-specific IgA at 28 days after full immunization in the low-dose group was 2332.14 (95 % CI: 1538.82-3534.45), that in the medium-dose group was 4800.98 (95 % CI: 2986.64-7717.50), and that in the high-dose group was 3204.30 (95 % CI: 2175.66-4719.27). In terms of safety, adverse events were mainly Grades 1 and 2, indicating that the safety of the vaccine is within the acceptable range in the healthy adult population. Considering the GMT and positive transfer rate of neutralizing antibodies for the main immunogenicity endpoints in the experimental groups, it was initially observed that the high-dose group had higher levels of neutralizing antibodies than the medium- and low-dose groups in adults aged 18-49 years. This novel inactivated rotavirus vaccine was generally well-tolerated in adults, and the vaccine was immunogenic in adults (ClinicalTrials.gov number, NCT04626856).

3.
J Am Chem Soc ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38785086

RESUMEN

The continuous dissolution and oxidation of active sites in Ru-based electrocatalysts have greatly hindered their practical application in proton exchange membrane water electrolyzers (PEMWE). In this work, we first used density functional theory (DFT) to calculate the dissolution energy of Ru in the 3d transition metal-doped MRuOx (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) to evaluate their stability for acidic oxygen evolution reaction (OER) and screen out ZnRuOx as the best candidate. To confirm the theoretical predictions, we experimentally synthesized these MRuOx materials and found that ZnRuOx indeed displays robust acidic OER stability with a negligible decay of η10 after 15 000 CV cycles. Of importance, using ZnRuOx as the anode, the PEMWE can run stably for 120 h at 200 mA cm-2. We also further uncover the stability mechanism of ZnRuOx, i.e., Zn atoms doped in the outside of ZnRuOx nanocrystal would form a "Zn-rich" shell, which effectively shortened average Ru-O bond lengths in ZnRuOx to strengthen the Ru-O interaction and therefore boosted intrinsic stability of ZnRuOx in acidic OER. In short, this work not only provides a new study paradigm of using DFT calculations to guide the experimental synthesis but also offers a proof-of-concept with 3d metal dopants as RuO2 stabilizer as a universal principle to develop high-durability Ru-based catalysts for PEMWE.

4.
Food Chem X ; 22: 101395, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38694544

RESUMEN

Xinyu mandarin is popular for its good flavor, but its flavor deteriorates during postharvest storage. To better understand the underlying basis of this change, the dynamics of the sensory profiles were investigated throughout fruit ripening and storage. Sweetness and sourness, determined especially by sucrose and citric acid content, were identified as the key sensory factors in flavor establishment during ripening, but not in flavor deterioration during storage. Postharvest flavor deterioration is mainly attributed to the reduction of retronasal aroma and the development of off-flavor. Furthermore, sugars, acids and volatile compounds were analyzed. Among the 101 detected volatile compounds, 10 changed significantly during the ripening process. The concentrations of 15 volatile components decreased during late postharvest storage, among which α-pinene and d-limonene were likely to play key roles in the reduction of aroma. Three volatile compounds were found to increase during storage, associated with off-flavor development.

5.
J Agric Food Chem ; 72(20): 11773-11781, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38722333

RESUMEN

Ulvan is a complex sulfated polysaccharide extracted from Ulva, and ulvan lyases can degrade ulvan through a ß-elimination mechanism to obtain oligosaccharides. In this study, a new ulvan lyase, EPL15085, which belongs to the polysaccharide lyase (PL) 28 family from Tamlana fucoidanivorans CW2-9, was characterized in detail. The optimal pH and salinity are 9.0 and 0.4 M NaCl, respectively. The Km and Vmax of recombinant EPL15085 toward ulvan are 0.80 mg·mL-1 and 11.22 µmol·min -1 mg-1·mL-1, respectively. Unexpectedly, it is very resistant to high temperatures. After treatment at 100 °C, EPL15085 maintained its ability to degrade ulvan. Molecular dynamics simulation analysis and site-directed mutagenesis analysis indicated that the strong rigidity of the disulfide bond between Cys74-Cys102 in the N-terminus is related to its thermostability. In addition, oligosaccharides with disaccharides and tetrasaccharides were the end products of EPL15085. Based on molecular docking and site-directed mutagenesis analysis, Tyr177 and Leu134 are considered to be the crucial residues for enzyme activity. In conclusion, our study identified a new PL28 family of ulvan lyases, EPL15085, with excellent heat resistance that can expand the database of ulvan lyases and provide the possibility to make full use of ulvan.


Asunto(s)
Estabilidad de Enzimas , Polisacárido Liasas , Polisacáridos , Polisacárido Liasas/genética , Polisacárido Liasas/química , Polisacárido Liasas/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Cinética , Calor , Concentración de Iones de Hidrógeno , Mutagénesis Sitio-Dirigida , Especificidad por Sustrato , Simulación del Acoplamiento Molecular , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Ulva/química , Ulva/enzimología , Ulva/genética , Simulación de Dinámica Molecular
6.
Hepatol Int ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683274

RESUMEN

BACKGROUND: Droplet digital PCR (ddPCR) is increasingly used in diagnosing clinical pathogens, but its effectiveness in cirrhosis patients with suspected ascites infection remains uncertain. METHODS: The diagnostic performance of ddPCR was assessed in 305 ascites samples, utilizing culture and clinical composite standards. The quantitative value and potential clinical impact of ddPCR were further analyzed in patients with spontaneous bacterial peritonitis. RESULTS: With culture standards, ddPCR demonstrated a sensitivity of 86.5% and specificity of 83.2% for bacterial or fungal detection. After adjustment of clinical composite criteria, specificity increased to 96.4%. Better diagnostic performance for all types of targeted pathogens, particularly fungi, was observed with ddPCR compared to culture, and more polymicrobial infections were detected (30.4% versus 5.7%, p < 0.001). Pathogen loads detected by ddPCR correlated with white blood cell count in ascites and blood, as well as polymorphonuclear cell (PMN) count in ascites, reflecting infection status rapidly. A positive clinical impact of 55.8% (43/77) was observed for ddPCR, which was more significant among patients with PMN count ≤ 250/mm3 in terms of medication adjustment and new diagnosis. ddPCR results for fungal detection were confirmed by clinical symptoms and other microbiological tests, which could guide antifungal therapy and reduce the risk of short-term mortality. CONCLUSIONS: ddPCR, with appropriate panel design, has advantages in pathogen detection and clinical management of ascites infection, especially for patients with fungal and polymicrobial infections. Patients with atypical spontaneous bacterial peritonitis benefited more from ddPCR.

7.
iScience ; 27(4): 109322, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500828

RESUMEN

Lunar-based equipment plays a vital role in the exploration of the moon because it undertakes the tasks of moving, transporting, digging, and so on. In order to control the gait of lunar-based equipment more precisely and guarantee mobile stability, the contact mechanism between its foot and lunar soil is worthy of in-depth study. In this paper, a contact model is proposed to predict the stress, strain, and displacement both on the contact surface and in the lunar soil when the foot is under vertical load. The axial stress in the proposed contact model is verified through the experiment and its accuracy in the lunar equipment is verified through simulation. The error is in a reasonable range and the influence depth of load conforms to the experiment results. This paper provides a relatively accurate model to describe the contact force between the lunar-based equipment's foot and the lunar soil and will promote the research of lunar exploration.

8.
J Hazard Mater ; 469: 133907, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38471380

RESUMEN

Pyrene is a high molecular weight polycyclic aromatic hydrocarbon (HMW-PAHs). It is a ubiquitous, persistent, and carcinogenic environmental contaminant that has raised concern worldwide. This research explored synergistic bacterial communities for efficient pyrene degradation in seven typical Southern China mangroves. The bacterial communities of seven typical mangroves were enriched by pyrene, and enriched bacterial communities showed an excellent pyrene degradation capacity of > 95% (except for HK mangrove and ZJ mangrove). Devosia, Hyphomicrobium, Flavobacterium, Marinobacter, Algoriphahus, and Youhaiella all have significant positive correlations with pyrene (R>0, p < 0.05) by 16SrRNA gene sequencing and metagenomics analysis, indicated that these genera play a vital role in pyrene metabolism. Meanwhile, the functional genes were involved in pyrene degradation that was enriched in the bacterial communities, including the genes of nagAa, ndoR, pcaG, etc. Furthermore, the analyses of functional genes and binning genomes demonstrated that some bacterial communities as a unique teamwork to cooperatively participate in pyrene degradation. Interestingly, the genes related to biogeochemical cycles were enriched, such as narG , soxA, and cyxJ, suggested that bacterial communities were also helpful in maintaining the stability of the ecological environment. In addition, some novel species with pyrene-degradation potential were identified in the pyrene-degrading bacterial communities, which can enrich the resource pool of pyrene-degrading strains. Overall, this study will help develop further research strategies for pollutant removal.


Asunto(s)
Microbiota , Hidrocarburos Policíclicos Aromáticos , Pirenos/metabolismo , Hidrocarburos Policíclicos Aromáticos/análisis , Bacterias/metabolismo , Biodegradación Ambiental
9.
J Hazard Mater ; 469: 134036, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38493623

RESUMEN

1,2,5,6,9,10-Hexabromocyclododecanes (HBCDs) are a sort of persistent organic pollutants (POPs). This research investigated 12 microbial communities enriched from sediments of four mangroves in China to transform HBCDs. Six microbial communities gained high transformation rates (27.5-97.7%) after 12 generations of serial transfer. Bacteria were the main contributors to transform HBCDs rather than fungi. Analyses on the bacterial compositions and binning genomes showed that Alcanivorax (55.246-84.942%) harboring haloalkane dehalogenase genes dadAH and dadBH dominated the microbial communities with high transformation rates. Moreover, expressions of dadAH and dadBH in the microbial communities and Alcanivorax isolate could be induced by HBCDs. Further, it was found that purified proteins DadAH and DadBH showed high conversion rates on HBCDs in 36 h (91.9 ± 7.4 and 101.0 ± 1.8%, respectively). The engineered Escherichia coli BL21 strains harbored two genes could convert 5.7 ± 0.4 and 35.1 ± 0.1% HBCDs, respectively, lower than their cell-free crude extracts (61.2 ± 5.2 and 56.5 ± 8.7%, respectively). The diastereoisomer-specific transforming trend by both microbial communities and enzymes were γ- > α- > ß-HBCD, differed from α- > ß- > Î³-HBCD by the Alcanivorax isolate. The identified transformation products indicated that HBCDs were dehalogenated via HBr elimination (dehydrobromination), hydrolytic and reductive debromination pathways in the enriched cultures. Two enzymes converted HBCDs via hydrolytic debromination. The present research provided theoretical bases for the biotransformation of HBCDs by microbial community and the bioremediation of HBCDs contamination in the environment.


Asunto(s)
Retardadores de Llama , Hidrocarburos Bromados , Microbiota , Estereoisomerismo , Hidrocarburos Bromados/metabolismo , Biotransformación , Bacterias/metabolismo
10.
Chemosphere ; 354: 141705, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494000

RESUMEN

Benzo[a]pyrene (BaP), as the typical representative of polycyclic aromatic hydrocarbons (PAHs), is a serious hazard to human health and natural environments. Though the study of microbial degradation of PAHs has persisted for decades, the degradation pathway of BaP is still unclear. Previously, Pontibacillus chungwhensis HN14 was isolated from high salinity environment exhibiting a high BaP degradation ability. Here, based on the intermediates identified, BaP was found to be transformed to 4,5-epoxide-BaP, BaP-trans-4,5-dihydrodiol, 1,2-dihydroxy-phenanthrene, 2-carboxy-1-naphthol, and 4,5-dimethoxybenzo[a]pyrene by the strain HN14. Furthermore, functional genes involved in degradation of BaP were identified using genome and transcriptome data. Heterogeneous co-expression of monooxygenase CYP102(HN14) and epoxide hydrolase EH(HN14) suggested that CYP102(HN14) could transform BaP to 4,5-epoxide-BaP, which was further transformed to BaP-trans-4,5-dihydrodiol by EH(HN14). Moreover, gene cyp102(HN14) knockout was performed using CRISPR/Cas9 gene-editing system which confirmed that CYP102(HN14) play a key role in the initial conversion of BaP. Finally, a novel BaP degradation pathway was constructed in bacteria, which showed BaP could be converted into chrysene, phenanthrene, naphthalene pathways for the first time. These findings enhanced our understanding of microbial degradation process for BaP and suggested the potential of using P. chungwhensis HN14 for bioremediation in PAH-contaminated environments.


Asunto(s)
Bacillaceae , Naftalenos , Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Humanos , Benzo(a)pireno/metabolismo , Biodegradación Ambiental , Hidrocarburos Policíclicos Aromáticos/metabolismo , Compuestos Epoxi
11.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 112-119, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38387908

RESUMEN

OBJECTIVE: To analyze the expression of MCP-1 and CCR2 in newly diagnosed diffuse large B-cell lymphoma (DLBCL), and to evaluate their correlation with clinicopathological features and prognosis. METHODS: A total of 141 patients with DLBCL diagnosed and treated in the Department of Hematology, the First Affiliated Hospital of Bengbu Medical College from January 2017 to May 2022 were retrospectively collected. The clinical characteristics, pathological data and prognostic factors of the patients were collected. Immunohistochemical staining was used to detect the expression of MCP-1 and CCR2 in the tissues of newly treated DLBCL patients, and to analyze the relationship between MCP-1 and clinical characteristics, prognosis and survival of patients. RESULTS: The expression of MCP-1 and CCR2 were correlated with Ann Arbor stage, IPI score, lactate dehydrogenase (LDH), Ki-67 index and therapeutic effect. There were no significant correlation between the expression of MCP-1 or CCR2 and other clinical histopathological parameters such as gender, age, ß2-microglobulin, BCL-2, BCL-6, Hans classification, initial location, B symptoms, bone marrow involvement. There was a statistical difference in OS and PFS between the MCP-1 or CCR2 positive group and the negative group, which was associated to poor prognosis.Univariate Cox regression analysis showed that ß2-microglobulin, Ki-67 index, IPI score, MCP-1, CCR2 expression levels and disease remission affected the PFS and OS of DLBCL patients (P < 0.05). Gender, age, LDH, BCL-2, BCL-6, Hans classification, primary tumor site, B symptoms, bone marrow involvement, Ann Arbor stage had no effect on PFS and OS (P >0.05). Multivariate analysis showed that ß2-microglobulin, Ki-67 index, IPI score, MCP-1, CCR2 expression levels and disease remission were independent influencing factors of patients (P < 0.05). CONCLUSION: The expression rate of MCP-1 or CCR2 in newly treated DLBCL is high, and it is correlated with the clinical features of poor prognosis such as stage and LDH of DLBCL patients, which is a poor prognostic factor affecting PFS and OS.


Asunto(s)
Relevancia Clínica , Linfoma de Células B Grandes Difuso , Humanos , Antígeno Ki-67 , L-Lactato Deshidrogenasa , Linfoma de Células B Grandes Difuso/patología , Pronóstico , Proteínas Proto-Oncogénicas c-bcl-2 , Receptores CCR2 , Estudios Retrospectivos
12.
J Nat Med ; 78(2): 427-438, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38334900

RESUMEN

Angelica dahurica (A. dahurica) has a wide range of pharmacological effects, including analgesic, anti-inflammatory and hepatoprotective effects. In this study, we investigated the effect of A. dahurica extract (AD) and its effective component bergapten (BG) on hepatic fibrosis and potential mechanisms. Hepatic fibrosis was induced by intraperitoneal injection with carbon tetrachloride (CCl4) for 1 week, and mice were administrated with AD or BG by gavage for 1 week before CCl4 injection. Hepatic stellate cells (HSCs) were stimulated by transforming growth factor-ß (TGF-ß) and cultured with AD, BG, GW4064 (FXR agonist) or Guggulsterone (FXR inhibitor). In CCl4-induced mice, AD significantly decreased serum aminotransferase, reduced excess accumulation of extracellular matrix (ECM), inhibited caspase-1 and IL-1ß, and increased FXR expressions. In activated HSCs, AD suppressed the expressions of α-SMA, collagen I, and TIMP-1/MMP-13 ratio and inflammatory factors, functioning as FXR agonist. In CCl4-induced mice, BG significantly improved serum transaminase and histopathological changes, reduced ECM excessive deposition, inflammatory response, and activated FXR expression. BG increased FXR expression and inhibited α-SMA and IL-1ß expressions in activated HSCs, functioning as GW4064. FXR deficiency significantly attenuated the decreasing effect of BG on α-SMA and IL-1ß expressions in LX-2 cells. In conclusion, AD could regulate hepatic fibrosis by regulating ECM excessive deposition and inflammation. Activating FXR signaling by BG might be the potential mechanism of AD against hepatic fibrosis.


Asunto(s)
Cirrosis Hepática , Transducción de Señal , Ratones , Animales , 5-Metoxipsoraleno/efectos adversos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Células Estrelladas Hepáticas , Factor de Crecimiento Transformador beta/farmacología , Hígado
13.
Int Med Case Rep J ; 17: 9-15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38205150

RESUMEN

Background: Dermatomyositis (DM) is an idiopathic inflammatory myopathy that is clinically challenging to diagnose and has a poor prognosis. It is characterized by symmetric proximal muscle weakness, muscle tenderness, dysphagia, characteristic skin rash (heliotrope rash, Gottron's sign), elevated muscle enzyme levels, abnormal electromyography, and muscle biopsy findings. DM with positive anti-MDA5 antibodies is mainly characterized by Gottron's sign, skin ulcers, facial erythema, mechanic's hands, and V-sign. In this case, the patient presented with the rare manifestation of severe necrotic skin ulcers in association with Gottron's sign, prompting us to report this case. Case Presentation: A 45-year-old female was admitted to the hospital with systemic joint pain, fatigue, multiple ulcers, and purulent discharge on both hands. Her myositis-specific antibody profile revealed positive anti-MDA5 and anti-SSA/RO52 antibodies. Treatment included a combination of glucocorticoids, immunosuppressants, gastric and liver protection, infection control, and wound care. After two weeks of treatment, the patient showed improvement in symptoms. However, on the 24th day of hospitalization, the wound at the right elbow joint ruptured and became infected, requiring debridement and skin grafting in the appropriate department. Conclusion: There has been limited research and reported cases of dermatomyositis with coexistence of positive anti-MDA5 and anti-SSA/RO52 antibodies combined with severe skin ulcers. Therefore, we present this rare case and emphasize the need for close follow-up on pulmonary involvement and skin ulcer progression, as well as timely implementation of new treatment strategies to actively improve the prognosis.

14.
Appl Environ Microbiol ; 90(2): e0174023, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38193674

RESUMEN

Pichia pastoris (P. pastoris) is one of the most popular cell factories for expressing exogenous proteins and producing useful chemicals. The alcohol oxidase 1 promoter (PAOX1) is the most commonly used strong promoter in P. pastoris and has the characteristic of biphasic expression. However, the inducer for PAOX1, methanol, has toxicity and poses risks in industrial settings. In the present study, analyzing transcriptomic data of cells collected at different stages of growth found that the formate dehydrogenase (FDH) gene ranked 4960th in relative expression among 5032 genes during the early logarithmic growth phase but rose to the 10th and 1st during the middle and late logarithmic growth phases, respectively, displaying a strict biphasic expression characteristic. The unique transcriptional regulatory profile of the FDH gene prompted us to investigate the properties of its promoter (PFDH800). Under single-copy conditions, when a green fluorescent protein variant was used as the expression target, the PFDH800 achieved 119% and 69% of the activity of the glyceraldehyde-3-phosphate dehydrogenase promoter and PAOX1, respectively. After increasing the copy number of the expression cassette in the strain to approximately four copies, the expression level of GFPuv driven by PFDH800 increased to approximately 2.5 times that of the strain containing GFPuv driven by a single copy of PAOX1. Our PFDH800-based expression system exhibited precise biphasic expression, ease of construction, minimal impact on normal cellular metabolism, and high strength. Therefore, it has the potential to serve as a new expression system to replace the PAOX1 promoter.IMPORTANCEThe alcohol oxidase 1 promoter (PAOX1) expression system has the characteristics of biphasic expression and high expression levels, making it the most widely used promoter in the yeast Pichia pastoris. However, PAOX1 requires methanol induction, which can be toxic and poses a fire hazard in large quantities. Our research has found that the activity of PFDH800 is closely related to the growth state of cells and can achieve biphasic expression without the need for an inducer. Compared to other reported non-methanol-induced biphasic expression systems, the system based on the PFDH800 offers several advantages, including high expression levels, simple construction, minimal impact on cellular metabolism, no need for an inducer, and the ability to fine-tune expression.


Asunto(s)
Metanol , Pichia , Saccharomycetales , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , Proteínas Recombinantes/metabolismo
15.
Cell Prolif ; 57(3): e13561, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37833824

RESUMEN

This study aimed to explore the osteogenic ability and mitochondrial autophagy of periodontal ligament stem cells (PDLSCs) under cyclic tensile stress (CTS). Primary PDLSCs were isolated from the periodontal membrane and cultured by passage. Alizarin red staining, alkaline phosphatase detection, reverse transcription polymerase chain reaction (RT-PCR), and Western blotting were used to detect the osteogenic differentiation level of PDLSCs. Mitochondrial autophagy in PDLSCs after CTS was measured using a mitochondrial autophagy detection kit, and the expression levels of autophagy-related proteins LC3B, LAMP1 and Beclin1 were measured using cellular immunofluorescence technology, RT-PCR and Western blot. After applying CTS, the osteogenic differentiation ability of PDLSCs was significantly improved, and the expression of alkaline phosphatase on the surface of the cell membrane and the formation of calcium nodules in PDLSCs were significantly increased respectively. We also studied the relevant mechanism of action and found that applying CTS can promote the osteogenic differentiation of PDLSCs and is related to the activation of mitochondrial autophagy. This study provides new insights into the mechanism of increased osteogenic differentiation on the tension side of orthodontic teeth and provides new experimental evidence for the involvement of mitochondrial autophagy in the regulation of osteogenic differentiation.


Asunto(s)
Osteogénesis , Ligamento Periodontal , Fosfatasa Alcalina/metabolismo , Células Madre , Autofagia
16.
Appl Biochem Biotechnol ; 196(3): 1450-1463, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37418127

RESUMEN

S-adenosyl-l-methionine (SAM), a vital physiologically active substance in living organisms, is produced by fermentation over Saccharomyces cerevisiae. The main limitation in SAM production was the low biosynthesis ability of SAM in S. cerevisiae. The aim of this work is to breed an SAM-overproducing mutant through UV mutagenesis coupled with high-throughput selection. Firstly, a high-throughput screening method by rapid identification of positive colonies was conducted. White colonies on YND medium were selected as positive strains. Then, nystatin/sinefungin was chosen as a resistant agent in directed mutagenesis. After several cycles of mutagenesis, a stable mutant 616-19-5 was successfully obtained and exhibited higher SAM production (0.41 g/L vs 1.39 g/L). Furthermore, the transcript levels of the genes SAM2, ADO1, and CHO2 involved in SAM biosynthesis increased, while ergosterol biosynthesis genes in mutant 616-19-5 significantly decreased. Finally, building on the above work, S. cerevisiae 616-19-5 could produce 10.92 ± 0.2 g/L SAM in a 5-L fermenter after 96 h of fermentation, showing a 2.02-fold increase in the product yield compared with the parent strain. Paving the way of breeding SAM-overproducing strain has improved the good basis for SAM industrial production.


Asunto(s)
Metionina , S-Adenosilmetionina , Saccharomyces cerevisiae/genética , Ensayos Analíticos de Alto Rendimiento , Fitomejoramiento , Racemetionina
17.
Int J Biol Macromol ; 254(Pt 1): 127804, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37913880

RESUMEN

Pectin, a complex natural macromolecule present in primary cell walls, exhibits high structural diversity. Pectin is composed of a main chain, which contains a high amount of partly methyl-esterified galacturonic acid (GalA), and numerous types of side chains that contain almost 17 different monosaccharides and over 20 different linkages. Due to this peculiar structure, pectin exhibits special physicochemical properties and a variety of bioactivities. For example, pectin exhibits strong bioactivity only in a low molecular weight range. Many different degrading enzymes, including hydrolases, lyases and esterases, are needed to depolymerize pectin due to its structural complexity. Pectin degradation involves polygalacturonases/rhamnogalacturonases and pectate/pectin lyases, which attack the linkages in the backbone via hydrolytic and ß-elimination modes, respectively. Pectin methyl/acetyl esterases involved in the de-esterification of pectin also play crucial roles. Many α-L-rhamnohydrolases, unsaturated rhamnogalacturonyl hydrolases, arabinanases and galactanases also contribute to heterogeneous pectin degradation. Although numerous microbial pectin-degrading enzymes have been described, the mechanisms involved in the coordinated degradation of pectin through these enzymes remain unclear. In recent years, the degradation of pectin by Bacteroides has received increasing attention, as Bacteroides species contain a unique genetic structure, polysaccharide utilization loci (PULs). The specific PULs of pectin degradation in Bacteroides species are a new field to study pectin metabolism in gut microbiota. This paper reviews the scientific information available on pectin structural characteristics, pectin-degrading enzymes, and PULs for the specific degradation of pectin.


Asunto(s)
Pectinas , Polisacáridos , Pectinas/química , Polisacáridos/metabolismo , Esterasas/metabolismo , Bacteroides/metabolismo , Poligalacturonasa/metabolismo
18.
J Hazard Mater ; 465: 133045, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38016312

RESUMEN

Various persistent organic pollutants (POPs) including estrogens are often enriched in mangrove regions. This research investigated the estrogens pollution levels in six mangroves located in the Southern China. The estrogen levels were found to be in the range of 5.3-24.9 ng/g dry weight, suggesting that these mangroves had been seriously contaminated. The bacterial communities under estrogen stress were further enriched by supplementing 17ß-estradiol (E2) as the sole carbon source. The enriched bacterial communities showed an excellent E2 degradation capacity > 95 %. These communities were able to transform E2 into estrone (E1), 4-hydroxy-estrone, and keto-estrone, etc. 16 S rDNA sequencing and metagenomics analysis revealed that bacterial taxa Oleiagrimonas, Pseudomonas, Terrimonas, and Nitratireductor etc. were the main contributors to estrogen degradation. Moreover, the genes involved in E2 degradation were enriched in the microbial communities, including the genes encoding 17ß-hydroxysteroid dehydrogenase, estrone 4-hydroxylase, etc. Finally, the analyses of functional genes and binning genomes demonstrated that E2 was degraded by bacterial communities via dehydrogenation into E1 by 17ß-hydroxysteroid dehydrogenase. E1 was then catabolically converted to 3aα-H-4α(3'-propanoate)- 7aß-methylhexahydro-1,5-indanedione via 4,5-seco pathway. Alternatively, E1 could also be hydroxylated to keto-estrone, followed by B-ring cleavage. This study provides novel insights into the biodegradation of E2 by the bacterial communities in estrogen-contaminated mangroves.


Asunto(s)
Estradiol , Estrona , Estrona/metabolismo , Estradiol/metabolismo , Estrógenos/análisis , Biodegradación Ambiental , Bacterias/metabolismo
19.
Ecotoxicol Environ Saf ; 270: 115855, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157797

RESUMEN

Vibrio bacterial species are dominant pathogens in mariculture animals. However, the extensive use of antibiotics and other chemicals has increased drug resistance in Vibrio bacteria. Despite rigorous investigative studies, the mechanism of drug resistance in Vibrio remains a mystery. In this study, we found that a gene encoding LamB-like outer membrane protein, named ArmPT, was upregulated in Va under antibiotic stress by RT-qPCR. We speculated that ArmPT might play a role in Va's drug resistance. Subsequently, using ArmPT gene knockout and gene complementation experiments, we confirmed its role in resistance against a variety of antibiotics, particularly kanamycin (KA). Transcriptomic and proteomic analyses identified 188 and 83 differentially expressed genes in the mutant strain compared with the wild-type (WT) before and after KA stress, respectively. Bioinformatic analysis predicted that ArmPT might control cell membrane permeability by changing cadaverine biosynthesis, thereby influencing the cell entry of antibiotics in Va. The higher levels of intracellular reactive oxygen species and the infused content of KA showed that antibiotics are more likely to enter the Va mutant strain. These results uncover the drug resistance mechanism of Va that can also exist in other similar pathogenic bacteria.


Asunto(s)
Antibacterianos , Vibrio alginolyticus , Animales , Antibacterianos/química , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo , Permeabilidad de la Membrana Celular , Proteómica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacterias/metabolismo
20.
World J Microbiol Biotechnol ; 40(1): 33, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38057619

RESUMEN

Environmental pollution is a global concern. Various organic compounds are released into the environment through wastewater, waste gas, and waste residue, ultimately accumulating in the environment and the food chain. This poses a significant threat to both human health and ecology. Currently, a growing body of research has demonstrated that microorganisms employ their Cytochrome P450 (CYP450) system for biodegradation, offering a crucial approach for eliminating these pollutants in environmental remediation. CYP450, a ubiquitous catalyst in nature, includes a vast array of family members distributed widely across various organisms, including bacteria, fungi, and mammals. These enzymes participate in the metabolism of diverse organic compounds. Furthermore, the rapid advancements in enzyme and protein engineering have led to increased utilization of engineered CYP450s in environmental remediation, enhancing their efficiency in pollutant removal. This article presents an overview of the current understanding of various members of the CYP450 superfamily involved in transforming organic pollutants and the engineering of biodegrading CYP450s. Additionally, it explores the catalytic mechanisms, current practical applications of CYP450-based systems, their potential applications, and the prospects in bioremediation.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Animales , Humanos , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Ingeniería de Proteínas , Biodegradación Ambiental , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA