Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mater Sci Eng C Mater Biol Appl ; 71: 558-564, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27987744

RESUMEN

Polystyrene (PS) is the most commonly used material in cell culture devices, such as Petri dishes, culture flasks and well plates. Micropatterning of cell culture substrates can significantly affect cell-material interactions leading to an increasing interest in the fabrication of topographically micro-structured PS surfaces. However, the high stiffness combined with brittleness of PS (elastic modulus 3-3.5GPa) makes high-quality patterning into PS difficult when standard hard molds, e.g. silicon and nickel, are used as templates. A new and robust scheme for easy processing of large-area high-density micro-patterning into PS film is established using nanoimprinting lithography and standard hot embossing techniques. Including an extra step through an intermediate PDMS mold alone does not result in faithful replication of the large area, high-density micropattern into PS. Here, we developed an approach using an additional intermediate mold out of OrmoStamp, which allows for high-quality and large-area micro-patterning into PS. OrmoStamp was originally developed for UV nanoimprint applications; this work demonstrates for the first time that OrmoStamp is a highly adequate material for micro-patterning of PS through hot embossing. Our proposed processing method achieves high-quality replication of micropatterns in PS, incorporating features with high aspect ratio (4:1, height:width), high density, and over a large pattern area. The proposed scheme can easily be adapted for other large-area and high-density micropatterns of PS, as well as other stiff and brittle polymers.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Módulo de Elasticidad , Poliestirenos/química , Rayos Ultravioleta , Técnicas de Cultivo de Célula/métodos
2.
Proc SPIE Int Soc Opt Eng ; 79842011 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24357903

RESUMEN

The purpose of this paper is to develop a novel ferromagnetic polymeric metal detector system by using a fiber-optic Mach-Zehnder interferometer with a newly developed ferromagnetic polymer as the magnetostrictive sensing device. This ferromagnetic polymeric metal detector system is simple to fabricate, small in size, and resistant to RF interference (which is common in typical electromagnetic type metal detectors). Metal detection is made possible by disrupting the magnetic flux density present on the magnetostrictive sensor. This paper discusses the magnetic properties of the ferromagnetic polymers. In addition, the preliminary results of successful sensing of different geometrical metal shapes will be discussed.

3.
J Intell Mater Syst Struct ; 22(14): 1613-1622, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22876080

RESUMEN

Our research team has developed a 2D micro image display device that can potentially overcome the size reduction limits while maintaining the high-image resolution and field of view obtained by mirror-based display systems. The basic design of the optical scanner includes a microfabricated SU-8 cantilever waveguide that is electromechanically deflected by a piezoelectric actuator. From the distal tip of the cantilever waveguide, a light beam is emitted and the direction of propagation is displaced along two orthogonal directions. The waveforms for the actuator and the LED light modulation are generated and controlled using a field programmable gate array. Our recent study is an update to the previously-reported mechanical scanner, replacing the hand-built PZT scanner and fiber waveguide with a microfabricated system incorporating aerosol-deposited PZT thin film and a polymeric SU-8 wave guide. In this article, we report on the design and fabrication of a prototype miniaturized 2D scanner, discuss optical and mechanical the modeling of the system's properties and present the experimental results.

4.
Artículo en Inglés | MEDLINE | ID: mdl-26425735

RESUMEN

This paper presents a new metal detector using a fiberoptic magnetostriction sensor. The metal sensor uses a fiber-optic Mach-Zehnder interferometer with a newly developed ferromagnetic polymer as the magnetostrictive sensing material. This polymeric magnetostrictive fiberoptic metal sensor is simple to fabricate, small in size, and resistant to RF interference (which is common in typical electromagnetic type metal detectors). Metal detection is based on disruption of the magnetic flux density across the magnetostriction sensor. In this paper, characteristics of the material being sensed and magnetic properties of the ferromagnetic polymers will be discussed.

5.
Proc SPIE Int Soc Opt Eng ; 7650: 76501P, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-22140300

RESUMEN

The purpose this paper is the development a novel polymeric fiber-optic magnetostrictive metal detector, using a fiber-optic Mach-Zehnder interferometer and polymeric magnetostrictive material. Metal detection is based on the strain-induced optical path length change steming from the ferromagnetic material introduced in the magnetic field. Varied optical phase shifts resulted largely from different metal objects. In this paper, the preliminary results on the different metal material detection will be discussed.

6.
Int Conf Adapt Struct Technol ; 2009: 53-62, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26726320

RESUMEN

Our research team has developed a MEMS based on a 2D micro image display device that can potentially overcome the size reduction limits while maintaining the high image resolution and field of view obtained by mirror based display systems. The basic design of the optical scanner includes a micro-fabricated polymer based cantilever waveguide that is electromechanically deflected by a 2D piezoelectric actuator. From the distal tip of the cantilever waveguide, a light beam is emitted and the direction of propagation is displaced along two orthogonal directions. The waveforms for the X-Y actuators and the LED light modulation are controlled using a field programmable gate array (FPGA). In this paper we will extend our display development by reporting more recent integration of components including actuators and light sources with a controller. Here we will describe the design, fabrication of the latest polymeric waveguide cantilever beam steering device driven by 2-D piezoelectric actuator using aerosol deposited PZT thick film actuators. The mechanical and optical design for the microresonating scanner will be discussed. In addition, the mechanical and optical performance of the 2-D scanner will be presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA