RESUMEN
Ethnopharmacological relevance: Pulsatilla decoction (PD) is a classical prescription for the treatment of ulcerative colitis. Previous studies have demonstrated that the therapeutic efficacy of PD is closely associated with the activation of Farnesoid X receptor (FXR). The activity of FXR is regulated by apical sodium-dependent bile acid transporter (ASBT), and the FXR-ASBT cascade reaction, centered around bile acid receptor FXR, plays a pivotal role in maintaining bile acid metabolic homeostasis to prevent the occurrence and progression of ulcerative colitis (UC). Aim of the study: To elucidate the underlying mechanism by which PD exerts its proteactive effects against Dextran Sulfate Sodium Salt (DSS)-induced ulcerative colitis, focusing on the modulation of FXR and ASBT. Materials and methods: To establish a model of acute ulcerative colitis, BALB/C mice were administered 3.5% DSS in their drinking water for consecutive 7 days. The disease activity index (DAI) was employed to evaluate the clinical symptoms exhibited by each group of mice. Goblet cell expression in colon tissue was assessed using glycogen schiff periodic acid-Schiff (PAS) and alcian blue staining techniques. Inflammatory cytokine expression in serum and colonic tissues was examined through enzyme-linked immunosorbent assay (ELISA). A PCR Array chip was utilized to screen 88 differential genes associated with the FXR-ASBT pathway in UC treatment with PD. Western blotting (WB) analysis was performed to detect protein expression levels of differentially expressed genes in mouse colon tissue. Results: The PD treatment effectively reduced the Disease Activity Index (DAI) score and mitigated colon histopathological damage, while also restoring weight and colon length. Furthermore, it significantly alleviated the severity of ulcerative colitis (UC), regulated inflammation, modulated goblet cell numbers, and restored bile acid balance. Additionally, a PCR Array analysis identified 21 differentially expressed genes involved in the FXR-ASBT pathway. Western blot results demonstrated significant restoration of FXR, GPBAR1, CYP7A1, and FGF15 protein expression levels following PD treatment; moreover, there was an observed tendency towards increased expression levels of ABCB11 and RXRα. Conclusion: The therapeutic efficacy of PD in UC mice is notable, potentially attributed to its modulation of bile acid homeostasis, enhancement of gut barrier function, and attenuation of intestinal inflammation.
RESUMEN
Objective: Guanyu Zhixie Granule (GYZXG) is a traditional Chinese medicine compound with definite efficacy in intervening in gastric ulcers (GUs). However, the effect mechanisms on GU are still unclear. This study aimed to explore its mechanism against GU based on amalgamated strategies. Methods: The comprehensive chemical characterization of the active compounds of GYZXG was conducted using UHPLC-Q/TOF-MS. Based on these results, key targets and action mechanisms were predicted through network pharmacology. GU was then induced in rats using anhydrous ethanol (1 mL/200 g). The intervention effects of GYZXG on GU were evaluated by measuring the inhibition rate of GU, conducting HE staining, and assessing the levels of IL-6, TNF-α, IL-10, IL-4, Pepsin (PP), and epidermal growth factor (EGF). Real-time quantitative PCR (RT-qPCR) was used to verify the mRNA levels of key targets and pathways. Metabolomics, combined with 16S rRNA sequencing, was used to investigate and confirm the action mechanism of GYZXG on GU. The correlation analysis between differential gut microbiota and differential metabolites was conducted using the spearman method. Results: For the first time, the results showed that nine active ingredients and sixteen targets were confirmed to intervene in GU when using GYZXG. Compared with the model group, GYZXG was found to increase the ulcer inhibition rate in the GYZXG-M group (p < 0.05), reduce the levels of IL-6, TNF-α, PP in gastric tissue, and increase the levels of IL-10, IL-4, and EGF. GYZXG could intervene in GU by regulating serum metabolites such as Glycocholic acid, Epinephrine, Ascorbic acid, and Linoleic acid, and by influencing bile secretion, the HIF-1 signaling pathway, and adipocyte catabolism. Additionally, GYZXG could intervene in GU by altering the gut microbiota diversity and modulating the relative abundance of Bacteroidetes, Bacteroides, Verrucomicrobia, Akkermansia, and Ruminococcus. The differential gut microbiota was strongly associated with serum differential metabolites. KEGG enrichment analysis indicated a significant role of the HIF-1 signaling pathway in GYZXG's intervention on GU. The changes in metabolites within metabolic pathways and the alterations in RELA, HIF1A, and EGF mRNA levels in RT-qPCR experiments provide further confirmation of this result. Conclusion: GYZXG can intervene in GU induced by anhydrous ethanol in rats by regulating gut microbiota and metabolic disorders, providing a theoretical basis for its use in GU intervention.
RESUMEN
The incidence of colibacillosis in poultry is on the rise, significantly affecting the chicken industry. Ceftiofur sodium (CS) is frequently employed to treat this disease, resulting in lipopolysaccharide (LPS) buildup. Processing plays a vital role in traditional Chinese veterinary medicine. The potential intervention in liver injury by polysaccharides from the differently processed products of Angelica sinensis (PDPPAS) induced by combined CS and LPS remains unclear. This study aims to investigate the protective effect of PDPPAS on chicken liver injury caused by CS combined with LPS buildup and further identify the polysaccharides with the highest hepatoprotective activity in chickens. Furthermore, the study elucidates polysaccharides' intervention mechanism using tandem mass tag (TMT) proteomics and multiple reaction monitoring (MRM) methods. A total of 190 1-day-old layer chickens were randomly assigned into 12 groups, of which 14 chickens were in the control group and 16 in other groups, for a 10-day trial. The screening results showed that charred A. sinensis polysaccharide (CASP) had the most effective and the best hepatoprotective effect at 48 h. TMT proteomics and MRM validation results demonstrated that the intervention mechanism of the CASP high-dose (CASPH) intervention group was closely related to the protein expressions of FCER2, TBXAS1, CD34, AGXT, GCAT, COX7A2L, and CYP2AC1. Conclusively, the intervention mechanism of CASPH had multitarget, multicenter regulatory features.
Asunto(s)
Angelica sinensis , Pollos , Hígado , Polisacáridos , Proteómica , Espectrometría de Masas en Tándem , Animales , Angelica sinensis/química , Proteómica/métodos , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/análisis , Espectrometría de Masas en Tándem/métodos , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteoma/análisis , Proteoma/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & controlRESUMEN
BACKGROUND: Leguminous Sophora moorcroftiana (SM) is a genuine medicinal material in Tibet. Many research results have reveal the Sophora moorcroftiana alkaloids (SMA), as the main active substance, have a wide range of effects, such as antibacterial, antitumor and antiparasitic effects. However, there are few reports on the inhibition of lung cancer (LC) and its inhibitory mechanism, and the pharmacological mechanism of SMA is still unclear, Therefore, exploring its mechanism of action is of great significance. METHODS: The SMA active components were obtained from the literature database. Whereas the corresponding targets were screened from the PubChem and PharmMapper database, UniProt database were conducted the correction and transformation of UniProt ID on the obtained targets. The GeneCards and OMIM databases identified targets associated with LC. Venny tools obtained the intersection targets of SMA and LC. R language and Cytoscape software constructed the visual of SMA - intersection targets - LC disease network. The intersection targets protein-protein interaction (PPI) network were built by the STRING database. The functions and pathways of the common targets of SMA and LC were enriched by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, molecular docking And A549 cells vitro experiment were performed to further validate our finding. RESULTS: We obtained six kinds of alkaloids in SM, 635 potential targets for these compounds, and 1,303 genes related to LC. SMA and LC intersection targets was 33, including ALB, CCND1, ESR1, NOTCH1 and AR. GO enrichment indicated that biological process of SMA was mainly involved in the positive regulation of transcription and nitric oxide biosynthetic process, and DNA-templated, etc. Biological functions were mainly involved in transcription factor binding and enzyme binding, etc. Cell components were mainly involved in protein complexes, extracellular exosome, cytoplasm and nuclear chromatin, etc., Which may be associated with its anti-LC effects. KEGG enrichment analysis showed that main pathways involved in the anti-LC effects of SMA, including pathway in cancer, non small-cell lung cancer, p53, PI3K-Akt and FOXO signaling pathways. Molecular docking analyses revealed that the six active compounds had a good binding activity with the main therapeutic targets 2W96, 2CCH and 1O96. Experiments in vitro proved that SMA inhibited the proliferation of LC A549 cells. CONCLUSIONS: Results of the present study, we have successfully revealed the SMA compounds had a multi-target and multi-channel regulatory mechanism in treatment LC, These findings provided a solid theoretical reference of SMA in the clinical treatment of LC.
Asunto(s)
Alcaloides , Neoplasias Pulmonares , Sophora , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Medicina Tradicional Tibetana , Fosfatidilinositol 3-Quinasas , Alcaloides/farmacologíaRESUMEN
Lonicerae Japonicae Caulis is the aboveground stem part of the Lonicera Japonica Thunb, which belongs to the medicine food homology species in China. It has the effects of clearing away heat, toxic material, dredging wind and unblocking collaterals. Modern research shows that it contains various active metabolites and a wide range of pharmacological effects, which is of great research and clinical application value. It mainly contains organic acids, volatile oils, flavonoids, triterpenes, triterpene saponins and other active metabolites. Its pharmacological effects mainly include anti-inflammatory, antibacterial, antitumor, antioxidant, and repairing bone and soft tissue. Based on the literature reports in recent years, the active metabolites, pharmacological effects and mechanisms of Lonicerae Japonicae Caulis were sorted out and summarized. It lays a foundation for explaining the efficacy material basis and application value of Lonicerae Japonicae Caulis. It aims to provide a reference for the in-depth research, development and utilization of Lonicerae Japonicae Caulis.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Pulsatilla decoction (PD), is an herbal formula commonly used for the treatment of ulcerative colitis (UC) in clinical practice, but the mechanism of PD alters the colitis remains elusive. AIM OF THE STUDY: To evaluate the intervention effect of PD on Dextran Sodium Sulfate (DSS)-induced UC based on gut microbiota and intestinal short-chain fatty acid (SCFAs) metabolism, and to investigate the mechanism of action of PD in treating UC. MATERIALS AND METHODS: A 3% (wt/vol) DSS-induced ulcerative colitis model in C57BL/6 male mice was used to evaluate the effect of oral PD in treating UC. The changes in gut microbiota in mice were analyzed by 16SrDNA gene sequencing, and the content of SCFAs in the intestinal contents of mice was determined by gas chromatography-mass spectrometry (GC-MS). Enzyme-linked immunosorbent assay (ELISA) was applied to analyze the expression of inflammatory cytokines in serum and colonic tissues, and western blotting (WB) was applied to analyze the expression of tight junction proteins in colonic tissues. RESULTS: PD can alleviate the symptoms of UC mice, Pulsatilla Decoction high dose treatment group (PDHT) shows the best effect. Compared with the DSS group, the PDHT had significantly lower body mass, disease activity index (DAI) score, colonic macroscopic damage index (CMDI) score, and pathological damage score, at the phylum level, the relative abundance of Bacteroidetes increased while that of Firmicutes and Proteobacteria decreased, at the Genus level, the abundance of Bacteroides and Lachnospiraceae.NK4A136.group increased while that of Clostridium. sensu.strictoã, Escherichia. shigella and Turicibacter decreased. Compared with the DSS group, acetate, propionate, and total SCFAs in the PDHT with significantly higher levels. The concentrations of interleukin-1ß (L-1ß), tumor necrosis factor-alpha (TNF-α), and interleukin-17 (IL-17) decreased whereby the concentration of interleukin-10 (IL-10) increased in the PDHT group. The expression levels of Occludin, zonula occludens-1 (ZO-1), Claudin1, Claudin5, G protein-coupled receptor43 (GPR43) protein, and the relative expression of ZO-1 and Occludin mRNA were significantly increased PDHT group. CONCLUSIONS: PD has a good therapeutic effect on UC mice. The pharmacological mechanism is probably maintaining the homeostasis and diversity of gut microbiota, increasing the content of SCFAs, and repairing the colonic mucosal barrier.
Asunto(s)
Colitis Ulcerosa , Colitis , Pulsatilla , Animales , Bacterias/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colon , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ácidos Grasos Volátiles/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ocludina/metabolismo , Propionatos , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Baitouweng Decoction is a famous Chinese medicinal decoction that has been used to treat diarrhea over thousands of years. In this study, we investigated the effect and mechanism of Baitouweng Decoction in the treatment of diarrhea. Wistar rats were randomly assigned into 4 groups: control group, dampness-heat diarrhea model group(modeling by complex factors including high-sugar and high-fat diet, improper diet, hot and humid environment, drinking and intraperitoneal injection of Escherichia coli), Baitouweng Decoction(3.6 g·kg~(-1)) group, and self-healing group. A urine metabolomics approach was developed with ultra liquid chromatography-quadrupole-time-of-flight-mass spectrometry(UPLC-Q-TOF-MS) for metabolic profiling. The differential metabolites were screened out by the multivariate comparison between groups. Diarrhea-related protein targets and the active compounds of Baitouweng Decoction were used to predict the protein targets of Baitouweng Decoction. Cytoscape 3.2.1 was employed to establish a active component-target protein interaction network. Three protein-protein interaction(PPI) networks of component target proteins, diarrhea-related proteins, and differential metabolite-related proteins were established and then merged by BisoGenet. ClueGO was used to perform the gene enrichment based on the genetic similarity. The results showed that Baitouweng Decoction effectively treated dampness-heat diarrhea in vivo. N-acetylserotonin, L-gamma-glutamylcysteine, glutathione, retinoate, melatonin, indole-3-acetaldehyde, L-cystine, biotin, and L-tryptophan were screened as differential metabolites in dampness-heat diarrhea model group. Tryptophan metabolism, glutathione metabolism, biotin metabolism, retinol metabolism, and cysteine and methionine metabolism were involved in the therapeutic effect of Baitouweng Decoction in vivo. A total of 167 targets were identified as major candidates for diarrhea progression. The gene-set enrichment revealed that the targets were involved in reactive oxygen species production, inflammation, and apoptosis. Baitouweng Decoction can restrain inflammation, production of reactive oxygen, and block apoptosis, thereby contributing to the treatment of dampness-heat diarrhea.
Asunto(s)
Medicamentos Herbarios Chinos , Metaboloma , Animales , Biotina , Diarrea/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Glutatión , Calor , Inflamación/tratamiento farmacológico , Metabolómica/métodos , Farmacología en Red , Ratas , Ratas WistarRESUMEN
Angelica sinensis (AS) is a common Traditional Chinese Medicine used for tonifying blood in China. Unprocessed AS and its four kinds of processed products (ASs) are used to treat blood deficiency syndrome in the country. The different blood-tonifying mechanisms of ASs remain unclear. In this work, a novel method integrating metabolomics and hematological and biochemical parameters was established to provide a complementary explanation of blood supplementation mechanism of ASs. Our results revealed that different ASs exhibited various blood supplementation effect, and that AS parched with alcohol demonstrated the best blood supplementation effect. Eight metabolites from liver tissue and 12 metabolites from spleen tissue were considered to be potential biomarkers. These biomarkers were involved in four metabolic pathways. Correlation analysis results showed that l-aspartic acid and l-alanine (spleen tissue), linoleic acid, and l-cystathionine (liver tissue) exhibited a high positive or negative correlation with the aforesaid biochemical indicators. The blood-supplementation effect mechanism of ASs were related to four metabolic pathways. l-Aspartic acid and l-alanine (spleen tissue), linoleic acid, and l-cystathionine (liver tissue) were the four key metabolites associated with the blood supplementation effect of ASs. This study gives a complementary explanation of the blood supplementation effect and mechanism of action of ASs.
Asunto(s)
Angelica sinensis/química , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Metaboloma/efectos de los fármacos , Aminoácidos/metabolismo , Animales , Cromatografía de Gases y Espectrometría de Masas , Ácido Linoleico/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Metabolómica/métodos , Ratones , Bazo/efectos de los fármacos , Bazo/metabolismoRESUMEN
In China, Baitouweng Tang (BTWT) is a commonly prescribed remedy for the treatment of ulcerative colitis (UC). Herein, the present study aims to assess the anti-colitis activity of BTWT and its underlying mechanisms in UC BALB/c mice. Induction of UC in BALB/c mice was carried out by adding 3.5% DSS in the drinking water of underlined mice. After UC induction, the mice were administrated with BTWT for 7 days. Clinical symptoms were assessed, followed by analyzing the bile acids (BAs) in serum, liver, colon, bile, and feces of UC mice through UPLC-MS/MS. The modified 16S rDNA high-throughput sequencing was carried out to examine the gut microbiota of feces. BTWT significantly improved the clinical symptoms such as and histological injury and colon shortening in UC induced mice. Furthermore, BTWT remarkably ameliorated colonic inflammatory response. After BTWT treatment, the increased concentrations of UDCA, HDCA, αMCA, ßMCA, CA, and GLCA in UC were decreased, and the levels of some BAs, especially CA, αMCA, and ßMCA were normalized. Moreover, the relative species abundance and gut microbiota diversity in the BTWT-exposed groups were found to be considerably elevated than those in the DSS-treated group. BTWT increased the relative abundance of Firmicutes, Proteobacteria, Actinobacteria, Tenericutes, and TM7, which were statistically lower in the fecal microbiota of UC mice. The relative abundance of Bacteroidetes was found to be elevated in the DSS group and normalized after BTWT treatment. BTWT increased the expression of FXR and TGR5 in the liver. BTWT administration improved DSS-induced mice signs by increasing the TGR5 and FXR expression levels. This result was achieved by the regulation of the BAs and gut microbiota.
Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colitis Ulcerosa/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Proteínas de Unión al ARN/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Colon/microbiología , Colon/patología , Sulfato de Dextran , Heces/microbiología , Regulación de la Expresión Génica/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Endogámicos BALB C , ARN Ribosómico 16S/genética , Receptores Acoplados a Proteínas G/metabolismoRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Diarrhea is a major medical problem in clinical practice. According to the theory of traditional Chinese medicine (TCM), different types of diarrhea should be treated with different TCM formulations based on the targeted medical condition. Dampness-heat diarrhea (DHD) is a serious diarrheal disease and Pulsatilla decoction (PD), a TCM, has been found effective against DHD. OBJECTIVE: The aim of this study was to clarify the mechanism of action of PD in DHD using an untargeted lipidomics strategy. MATERIALS AND METHODS: Wistar rats were randomized to four groups, including the control group, model group, PD groups and self-healing group. The PD groups were given a daily intragastric gavage of PD at doses of 3.76 g/kg. The rat model of DHD established by such complex factors as high-sugar and high-fat diet, improper diet, high temperature and humidity environment, drinking and intraperitoneal injection of Escherichia coli., which imitated the inducing conditions of DHD. Then the clinical symptoms and signs, blood routine, serum inflammatory cytokines levels and the histopathological changes of main organs were detected and observed to evaluate DHD model and therapeutic effect of PD. Lipid biomarkers of DHD were selected by comparing the control and model groups with the colon lipidomics technology and an ultra-high performance liquid chromatography (UHPLC) coupled with Q Exactive plus mass analyzer. Multivariate statistical analysis and pattern recognition were employed to examine different lipids within the colon of PD-treated rats. RESULTS: The clinical symptoms and signs of the model rats were consistent with the diagnostic criteria of DHD. After treatment with PD, the clinical symptoms and signs of the rats with DHD were improved; the indexes of blood routine and inflammatory cytokines levels tended to be normal. The lipidomics profile of the model group were evidently disordered when compared to the control group. A total of 42 significantly altered lipids between the model-control groups were identified by multivariate statistical analysis. DHD may result from such lipid disorders which are related to glycerophospholipid metabolism, arachidonic acid (AA) metabolism, and sphingolipid metabolism. After PD treatment, the lipidomic profiles of the disorders tended to recover when compared to the model group. Twenty lipid molecules were identified and some glycerophospholipids and AA levels returned close to the normal level. CONCLUSION: Glycerophospholipid metabolism may play an important role in the treatment of dampness-heat induced diarrhea using PD.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Sophora alopecuroides L. is one of the most commonly used plants in traditional medicine for the management conditions including inflammatory and gastrointestinal disease. However, the therapeutic mechanism of Sophora alopecuroides L.particularly in inflammatory bowel disease (IBD) remains unclear. AIM OF THE STUDY: To evaluate the treatment effects of total alkaloids of Sophora alopecuroides L. in ulcerative colitis (UC) mice model and explore the therapeutic mechanism of KDZ on UC based on bile acid metabolism and gut microbiota. MATERIALS AND METHODS: Colitis were induced in BALB/c mice by administering 3.5% dextran sulfate sodium (DSS) in drinking water for 7 days. The mice were then given KDZ (300, 150 and 75 mg/kg) and the positive drug sulfasalazine (SASP, 450 mg/kg) via oral administration for 7 days. The levels of 23 bile acids in the liver, bile, serum, cecum content and colon were determined through ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS). The cecum microbiota was characterized through high-throughput Illumina MiSeq sequencing. RESULTS: KDZ treatment significantly decreased the disease activity index (DAI) scores and ameliorated colonic injury in DSS-treated mice. The expression of IL-1ß and TGF-ß1 were suppressed, yet, IL-10 was up-regulated by KDZ and SASP treatment compared with those in the model group. Meanwhile, the serum contents of total bile acid and total cholesterol in the DSS group increased significantly compared with those in the control group, but reversed by SASP and KDZ. The relative abundance of Firmicutes increased after KDZ was administration, whereas the abundance of Bacteroidetes decreased. αMCA, ßMCA, ωMCA and CA in the SASP and KDZ groups did not differ from those in the control group, whereas these parameters significantly increased in the DSS group. CONCLUSIONS: KDZ had a protective effect on DSS-induced colitis by mitigating colonic injury, preventing gut microbiota dysbiosis and regulating bile acid metabolism.
Asunto(s)
Alcaloides/farmacología , Ácidos y Sales Biliares/metabolismo , Ciego/efectos de los fármacos , Colitis Ulcerosa/prevención & control , Colon/efectos de los fármacos , Fármacos Gastrointestinales/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Extractos Vegetales/farmacología , Sophora , Alcaloides/aislamiento & purificación , Animales , Ciego/metabolismo , Ciego/microbiología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , Colon/metabolismo , Colon/patología , Modelos Animales de Enfermedad , Disbiosis , Fármacos Gastrointestinales/aislamiento & purificación , Mediadores de Inflamación/metabolismo , Masculino , Ratones Endogámicos BALB C , Extractos Vegetales/aislamiento & purificación , Sophora/químicaRESUMEN
Pulsatilla decoction (PD) is a classical prescription in traditional Chinese medicine that has therapeutic effects on wetness-heat-induced diarrhea (WHD). To investigate the therapeutic effects of PD in the treatment of WHD and elucidate the potential mechanism, we used a metabolomics strategy on the base of ultraperformance liquid chromatography coupled with quadrupole time-of-flight/mass spectrometry (UPLC-Q/TOF-MS/MS) and analyzed the serum samples of 32 rats to identify differential metabolites and pathways associated with the PD treatment of WHD. With variable importance for projection >1.0 in the Orthogonal partial least-squares discriminant analysis (OPLS-DA ) models and FC ≥1.2 or ≤0.8, 67 differential metabolites in the model and control groups and 33 differential metabolites in the model and PD groups were screened. A total of 23 differential metabolites were selected based on Venny analysis. Functional analysis showed that the differential metabolites identified were primarily involved in pentose and glucuronate interconversions, glycerophospholipid metabolism, tryptophan metabolism, starch and sucrose metabolism, and glycerolipid metabolism. This study suggested that PD exerts inhibitory effects on WHD. In particular, the significant roles of PD for treating WHD lie in regulating perturbed energy metabolism, glycerophospholipid metabolism and glycerolipid metabolism, and promoting lysoPC production restoring the function of intestinal tract.
Asunto(s)
Diarrea/metabolismo , Medicamentos Herbarios Chinos/farmacología , Metaboloma/efectos de los fármacos , Pulsatilla , Animales , Cromatografía Líquida de Alta Presión , Citocinas/sangre , Diarrea/etiología , Femenino , Calor/efectos adversos , Masculino , Metabolómica , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Espectrometría de Masas en TándemRESUMEN
Danggui Buxue Tang (DBT) is a famous Chinese medicinal decoction. Mechanism of DBT action is wide ranging and unclear. Exploring new ways of treatment with DBT is useful. Sprague-Dawley(SD) rats were randomly divided into 3 groups including control (NC, Saline), the DBT (at a dose of 8.10 g-1), and blood deficiency(BD) (Cyclophosphamide (APH)-andCyclophosphamide(CTX)-induced anaemia). A metabolomics approach using Liquid Chromatography-Quadrupole-Time-of-Flight/Mass Spectrometry (LC/Q-TOFMS) was developed to perform the plasma metabolic profiling analysis and differential metaboliteswerescreened according to the multivariate statistical analysiscomparing the NC and BD groups, andthe hub metabolites were outliers with high scores of the centrality indices. Anaemia disease-related protein target and compound of DBT databases were constructed. The TCMSP, ChemMapper and STITCH databases were used to predict the protein targets of DBT. Using the Cytoscape 3.2.1 to establish a phytochemical component-target protein interaction network and establish a component, protein and hub metabolite protein-protein interaction (PPI) network and merging the three PPI networks basing on BisoGenet. The gene enrichment analysis was used to analyse the relationship between proteins based on the relevant genetic similarity by ClueGO. The results shown DBT effectively treated anaemia in vivo. 11 metabolic pathways are involved in the therapeutic effect of DBT in vivo; S-adenosyl-l-methionine, glycine, l-cysteine, arachidonic acid (AA) and phosphatidylcholine(PC) were screened as hub metabolites in APH-and CTX-induced anaemia. A total of 288 targets were identified as major candidates for anaemia progression. The gene-set enrichment analysis revealed that the targets are involved in iron ion binding, haemopoiesis, reactive oxygen species production, inflammation and apoptosis. The results also showed that these targets were associated with iron ion binding, haemopoiesis, ROS production, apoptosis, inflammation and related signalling pathways. DBT can promote iron ion binding and haemopoiesis activities, restrain inflammation, production of reactive oxygen, block apoptosis, and contribute significantly to the DBT treat anaemia.
Asunto(s)
Anemia/tratamiento farmacológico , Anemia/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Metaboloma/efectos de los fármacos , Metabolómica , Anemia/sangre , Anemia/inducido químicamente , Animales , Cromatografía Liquida , Ciclofosfamida/toxicidad , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Espectrometría de Masas en TándemRESUMEN
Lipopolysaccharide (LPS)-induced inflammation occurs commonly and volatile oil from Angelica sinensis (VOAS) can be used as an anti-inflammatory agent. The molecular mechanisms that allow the anti-inflammatory factors to be expressed are still unknown. In this paper, we applied gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography-time-of-flight mass spectrometry (LC-Q/TOF-MS) based on a metabolomics platform coupled with a network approach to analyze urine samples in three groups of rats: one with LPS-induced inflammation (MI); one with intervention with VOAS; and normal controls (NC). Our study found definite metabolic footprints of inflammation and showed that all three groups of rats, MI, intervention with VOAS and NC have distinct metabolic profiles in urine. The concentrations of 48 metabolites differed significantly among the three groups. The metabolites in urine were screened by the GC-MS and LC-Q/TOF-MS methods. The significantly changed metabolites (p < 0.05, variable importance in projection > 1.5) between MI, NC and VOAS were included in the metabolic networks. Finally, hub metabolites were screened, including glycine, arachidonic acid, l-glutamate, pyruvate and succinate, which have high values of degree (k). the Results suggest that disorders of glycine, arachidonic acid, l-glutamate, pyruvate and succinate metabolism might play an important part in the predisposition and development of LPS-induced inflammation. By applying metabolomics with network methods, the mechanisms of diseases are clearly elucidated.
Asunto(s)
Angelica sinensis/química , Antiinflamatorios/farmacología , Inflamación/orina , Redes y Vías Metabólicas/efectos de los fármacos , Metaboloma/efectos de los fármacos , Aceites Volátiles/farmacología , Animales , Biomarcadores/orina , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/efectos adversos , Hígado/efectos de los fármacos , Hígado/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Aceites de Plantas/farmacología , Ratas , Ratas Wistar , Ácido Succínico/metabolismoRESUMEN
A novel approach using metabolomics coupled with a metabolic network was used to investigate the effects of Tao-Hong-Si-Wu decoction (THSWD) on the rat model of acute blood stasis syndrome. Acute blood stasis syndrome was induced by placing the rats in ice-cold water following two injections with epinephrine. The hemorheological indicators [whole blood viscosity (WBV) and plasma viscosity (PV)] and the blood coagulation indicators [thrombin time (TT), prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrinogen (FIB)] were detected. The nonparametric univariate method and multivariate statistical analysis were performed for determining the potential biomarkers. A correlation map was structured between biochemical indicators and hub metabolites to explain the effects mechanism of THSWD. After the administration of THSWD, the levels of WBV, PV, TT, APTT and FIB returned to levels observed in the control group. According to metabolomics coupled with metabolic network analysis, the intervention of THSWD in rats with acute blood stasis syndrome induced substantial and characteristic changes in their metabolic profiles. Fifteen metabolites were screened, which mainly involved 10 pathways and five hub metabolites, namely, l-glutamate, l-phenylalanine, N-acylsphingosine, arachidonic acid and phosphatidate. The biochemical indicators and hub metabolites could be adjusted to close to normal levels by THSWD. Therefore, combining metabolomics and metabolic network helped to evaluate the effects of THSWD on acute blood stasis.
Asunto(s)
Cromatografía Liquida/métodos , Medicamentos Herbarios Chinos/farmacología , Enfermedades Hematológicas/metabolismo , Metaboloma/efectos de los fármacos , Metabolómica/métodos , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Femenino , Enfermedades Hematológicas/sangre , Medicina Tradicional China , Redes y Vías Metabólicas/efectos de los fármacos , Ratas , Ratas Wistar , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodosRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Roots of Angelica sinensis (Oliv.) Diels (AS) a commonly used herbal, always act as an anti-inflammatory drug in Chinese traditional therapy. In clinical use, AS is always processed before being used for the reason that processing can increase its therapeutic effect. Recent studies have shown that volatile oil of AS (VOAS), an important component in AS, has evident anti-inflammatory activities. AIM OF THE STUDY: In this study, our aim is to evaluate the anti-inflammatory effects of volatile oils from processed products of AS. MATERIALS AND METHODS: In this paper, volatile oils from stir-fried AS (C-VOAS), parched AS with alcohol (J-VOAS), parched AS with soil (T-VOAS), and parched AS with sesame oil (Y-VOAS) were applied to intervene the carrageenan-induced acute inflammation model rats. GC-MS based metabolomics was utilized to determine different metabolites in the inflammatory exudate and plasma samples. RESULTS: The results showed that VOASs could significantly inhibit the release of PGE2, HIS, 5-HT and TNF-α, among which C-VOAS and J-VOAS expressed better effect. Otherwise, 14 potential biomarkers were identified respectively in inflammatory exudate and plasma, which changed highly significantly (P<0.01) in C-VOAS and J-VOAS groups. CONCLUSIONS: We inferred that the anti-inflammatory effect of C-VOAS and J-VOAS were superior to other VOASs.
Asunto(s)
Angelica sinensis/química , Antiinflamatorios/farmacología , Medicamentos Herbarios Chinos/farmacología , Cromatografía de Gases y Espectrometría de Masas , Inflamación/prevención & control , Metabolómica/métodos , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Biomarcadores/metabolismo , Carragenina , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/aislamiento & purificación , Histamina/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Análisis Multivariante , Aceites Volátiles/aislamiento & purificación , Fitoterapia , Aceites de Plantas/aislamiento & purificación , Raíces de Plantas/química , Plantas Medicinales , Análisis de Componente Principal , Ratas Wistar , Serotonina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
This study aimed at determining the effects of Angelica sinensis (AS) on urinary metabolites in blood deficiency mice and exploring its replenishing blood mechanism. Gas chromatography-mass spectrometry (GC-MS) was applied to detect metabolites in the urine samples in different collection periods. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to investigate the differences in metabolic profiles among control group (CG), blood deficiency model group (MG), AS groups, and Colla Corii Asini group (CCAG). The potential biomarkers were identified based on the variable importance in the projection (VIP), T-test, and National Institute of Standards and Technology (NIST) and mass spectra library. The metabolites were analyzed using metabolomics pathway analysis (MetPA) to build the metabolic pathways. Our results indicated that, on the seventh day, the levels of glucose, lactic acid, pyruvic acid, alanine, acetoacetic acid, and citric acid changed significantly in blood deficiency mice. However, these metabolic deviations came to closer to normal levels after AS intervention. The reversing blood-deficiency mechanism of AS might involve regulating synthesis and degradation of ketone bodies, Pyruvate metabolism, TCA cycle, and Glycolysis/Gluconeogenesis. In conclusion, metabonomics is a robust and promising means for the identification of biomarkers and elucidation of the mechanisms of a disease, thereby highlighting its importance in drug discovery.
Asunto(s)
Angelica sinensis/química , Enfermedades Hematológicas/tratamiento farmacológico , Enfermedades Hematológicas/orina , Metabolómica , Extractos Vegetales/uso terapéutico , Anemia/tratamiento farmacológico , Anemia/orina , Animales , Biomarcadores/orina , Cromatografía de Gases y Espectrometría de Masas , Masculino , RatonesRESUMEN
To evaluate the anti-acute inflammation effects of volatile oils from different processed products of Angelicae Sinensis Radix(AS) in the rat model of acute inflammation established by the metabolomic method. Volatile oil of charred AS (C-VOAS), wine-processed AS (J-VOAS), locally processed AS (T-VOAS) and oil-process AS (Y-VOAS) were applied to intervene the rat acute paw swelling inflammation model induced by Carrageenan. Changes in serum HIS, 5-HT, PGE2 and TNF-α content in rats were detected. Gas chromatography-mass spectrometry was used to detect the metabolites in plasma. Potential biomarkers were investigated according to principal component analysis method and partial least-squares discriminant analysis. According to the results, C-VOAS and J-VOAS could significantly inhibit inflammatory mediators Histamine, 5-hydroxytryptamine, prostaglandin-E2 and cytokine tumor necrosis factor-alpha (P<0.01), and T-VOAS and Y-VOAS also showed a significantly inhibitory effect (P<0.05). Compared with the normal group, 14 endogenous metabolite biomarkers showed metabolic disturbance in plasma (P<0.05 or P<0.01). Compared with acute inflammation model group, C-VOAS and J-VOAS could better recover the levels of the endogenous metabolites (P<0.05 or P<0.01) than T-VOAS and Y-VOAS (P<0.05 or P<0.01). This study suggests that C-VOAS and J-VOAS show a better anti-inflammatory effect than T-VOAS and Y-VOAS. Therefore, the metabolomic method could be used to expound the anti-inflammatory mechanism of volatile oils from different processed products of AS, and provide a theoretical basis for clinical application of VOAS.
Asunto(s)
Angelica sinensis/química , Antiinflamatorios/farmacología , Medicamentos Herbarios Chinos/farmacología , Aceites Volátiles/farmacología , Animales , Dinoprostona/sangre , Cromatografía de Gases y Espectrometría de Masas , Histamina/sangre , Metabolómica , Ratas , Serotonina/sangre , Factor de Necrosis Tumoral alfa/sangreRESUMEN
Objective: To compare the intervention effects of volatile oils from different preparations of Angelica sinensis root on acute inflammation induced by lipopolysaccharide in rats. Methods: Acute inflammation model was induced by intraperitoneal injection of lipopolysaccharide( 100 µg/kg) in rats. Blood and serum inflammatory mediators and cytokines were detected, combining with the pathological histological observation of lung and liver to evaluate the anti-inflammatory activities of volatile oils from parching Angelica sinensis root with wine( J-VOAS),volatile oils from charred Angelica sinensis root( C-VOAS) and Angelica sinensis root( S-VOAS). Results: Compared with control group, the WBC count, the percentage of NE and PLT count in acute inflammation model group significantly increased ( P < 0. 05),and the percentage of LY significantly decreased( P < 0. 05); the content of IL-1ß,IL-6,NO and TNF-α significantly increased( P < 0. 001) and content of IL-10 significantly decreased( P < 0. 05) in model group; after J-VOAS,C-VOAS and S-VOAS intervention, the blood routine index and serum inflammatory mediators and cytokines significantly reversed( P < 0. 05). The pathological histological study showed that expanded alveoli, massive inflammatory cells infiltration in alveoli and pulmonary interstitium, the liver leaflets diffuse necrosis, hepatic cord derangement, and some of the liver cells degeneration and edema in model group; after J-VOAS intervention, their pathological changes significantly reduced. Conclusion: All volatile oils from different preparations of Angelica sinensis root had intervention on acute inflammation induced by LPS. And J-VOAS had the best effect, followed by C-VOAS and S-VOAS.
RESUMEN
Different processed volatile oils from AS on urine metabolites of normal rats were analyzed to reveal the possible metabolic pathways. Totally 50 male Waster rats were randomly divided into normal control group, C-ASVO group, J-ASVO group, T-ASVO group and Y-ASVO group, with 10 rats in each group. The normal group was given isovolumetric 0.5% polyoxyethylene sorbitan fatty acid esterï¼Tween-80ï¼, while the other groups were given 0.176 mLâ¢kg⻹ different processed volatile oils from AS. Drugs were given for 3 successive days. The urine was collected at 48 h with metabolic cages. GC-MS was employed to detect the metabolic fingerprint of rat urine in different times. Principal component analysis(PCA) and orthogonal partial least-squares discriminant analysis(OPLS-DA) were adopted for a multivariate statistical analysis. Metabolites with potential differences were selected based on the results of variable importance in the projection(VIP) and t test. The metabolic pathway analysis(MetPA) database was built for different metabolites' metabolic pathways. The results showed that compared with the normal group, 31 kinds of endogenous metabolites in the different processed volatile oils from AS groups change significantly(P<0.05). And there were differences in normal rat urine metabolites among the different processed volatile oils from AS, of which the influence degree of J-ASVO was slightly stronger than C-ASVO, T-ASVO, and Y-ASVO. Therefore, the metabolism effect may be focused on energy metabolism, amino acid metabolism, fatty acid metabolism and glucose metabolism. This study focused on metabolism and mechanism of different processed volatile oils from AS, and provided new ideas for pharmacological actions of traditional Chinese medicines.