Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Front Vet Sci ; 11: 1410113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301284

RESUMEN

The pathogenic nature of bacteria can be increased by cleaving antimicrobial peptides using omptins, to avoid or counter the host's natural immune defenses. Plasmid-encoded OmpT (pOmpT or ArlC) in avian pathogenic Escherichia coli (APEC), like the chromosome-encoded OmpT (cOmpT), belongs to the omptin family and both exhibit highly similar sequences and structures. Through sequence alignment and physiological examinations, pOmpT has been identified as a virulence factor, distinct from cOmpT in terms of substrate specificity. When pOmpT is compared with cOmpT regarding their proteolytic activities and target substrates, Asp267 and Ser276 on loop 5 of cOmpT are found to be binding sites that facilitate substrate anchoring and enhance substrate cleavage (protamine or synthetic peptide) by the catalytic center. Conversely, the characteristics of residues at positions 267 and 276 on loop 5 of pOmpT inhibit protamine cleavage, yet allow the specific cleavage of the human antimicrobial peptide RNase 7, which plays a role in host defense. This finding suggests a relationship between these two binding sites and substrate specificity. Furthermore, the substrate-binding sites (residues 267 and 276, particularly residue 267) of cOmpT and pOmpT are determined to be critical in the virulence of APEC. In summary, residues 267 and 276 of pOmpT are crucial for the pathogenicity of APEC and offer new insights into the determinants of APEC virulence and the development of antimicrobial drugs.

2.
BMC Genomics ; 25(1): 752, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090561

RESUMEN

Pseudorabies have caused enormous economic losses in China's pig industry and have recurred on many large pig farms since late 2011. The disease is caused by highly pathogenic, antigenic variant pseudorabies virus (vPRV) strains. Our laboratory isolated a pseudorabies virus in 2015 and named it XJ5. The pathogenic ability of this mutant strain was much stronger than that of the original isolate. After we sequenced its whole genome (GenBank accession number: OP512542), we found that its overall structure was not greatly changed compared with that of the previous strain Ea (KX423960.1). The whole genome alignment showed that XJ5 had a strong genetic relationship with the strains isolated in China after 2012 reported in GenBank. Based on the isolation time of XJ5 and the mutation and recombination analysis of programs, we found that the whole genome homology of XJ5 and other strains with Chinese isolates was greater than 95%, while the homology with strains outside Asia was less than 94%, which indicated that there may be some recombination and mutation patterns. We found that virulent PRV isolates emerged successively in China in 2011 and formed two different evolutionary clades from foreign isolates. At the same time, this may be due to improper immunization and the presence of wild strains in the field, and recent reports have confirmed that Bartha vaccine strains recombine with wild strains to obtain new pathogenic strains. We performed genetic evolution analysis of XJ5 isolated and sequenced in our laboratory to trace its possible mutations and recombination. We found that XJ5 may be the result of natural mutation of a virus in a branch of mutant strains widely existing in China.


Asunto(s)
Evolución Molecular , Genoma Viral , Herpesvirus Suido 1 , Mutación , Filogenia , Seudorrabia , Recombinación Genética , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/aislamiento & purificación , China , Animales , Porcinos , Seudorrabia/virología , Enfermedades de los Porcinos/virología , Secuenciación Completa del Genoma
3.
ACS Infect Dis ; 10(8): 2929-2938, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38949961

RESUMEN

Biofilm formation of Klebsiella pneumoniae can protect bacteria from antibiotics and is difficult to eradicate. Thus, the influence of subinhibitory concentrations of antibiotics on bacteria is becoming increasingly important. Our study showed that subminimum inhibitory concentrations (sub-MICs) of tetracycline antibiotics can increase biofilm formation in minocycline-resistant Klebsiella pneumoniae clinical strains. However, in the bacterial adhesion and invasion experiments, the adhesion and invasion ability decreased and the survival rate of Galleria mellonella increased. Under sub-MICs of tetracycline antibiotics treatment, abnormal stretching of bacteria was observed by scanning electron microscopy. Treatment with sub-MICs of tetracyclines leads to increased surface hydrophobicity and eDNA content and decreased outer membrane permeability. The expression levels of the fimA, luxS, qseB, and qseC genes decreased, the expression level of mrkA increased, and the expression level of acrA was inconsistent under different tetracycline antibiotics treatments. Together, our results suggested that the increase in Klebsiella pneumoniae biofilm formation caused by sub-MICs of tetracycline antibiotics may occur by affecting bacterial physical and chemical properties and associated genes expression.


Asunto(s)
Antibacterianos , Biopelículas , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Biopelículas/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Antibacterianos/farmacología , Minociclina/farmacología , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/tratamiento farmacológico , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Animales , Tetraciclina/farmacología , Adhesión Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/microbiología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas
4.
Int J Biol Macromol ; 274(Pt 2): 133455, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945342

RESUMEN

Pseudorabies virus (PRV) is an important pathogen harming the global pig industry. Vaccines available for swine cannot protect against PRV completely. Furthermore, no antiviral drugs are available to treat PRV infections. Rehmmannia glutinosa polysaccharide (RGP) possesses several medicinal properties. However, its antiviral activity is not reported. In the present study, we found that RGP can inhibit PRV/XJ5 infection by western blotting, immunofluorescent assay (IFA), and TCID50 assay quantitative polymerase chain reaction (qPCR). We revealed RGP can inhibit virus adsorption and invasion into PK-15 cells in a dose-dependent manner via western blotting, IFA, TCID50 assay, and quantitative polymerase chain reaction (qPCR), and suppressed PRV/XJ5 replication through western blotting, and qPCR. Additionally, it also reduced PRV/XJ5-induced ROS, lipid oxidation, and improved SOD levels in PK-15 cells, which was observed by using corresponding test kits. To conclude, our findings suggest that RGP might be a novel therapeutic agent for preventing and controlling PRV infection and antioxidant agent.


Asunto(s)
Antioxidantes , Antivirales , Herpesvirus Suido 1 , Polisacáridos , Replicación Viral , Herpesvirus Suido 1/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Polisacáridos/farmacología , Polisacáridos/química , Animales , Antioxidantes/farmacología , Antioxidantes/química , Porcinos , Línea Celular , Replicación Viral/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Seudorrabia/tratamiento farmacológico , Seudorrabia/virología
5.
iScience ; 27(6): 109942, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38812547

RESUMEN

Biofilm formation plays a significant role in antibiotic resistance, necessitating the search for alternative therapies against biofilm-associated infections. This study demonstrates that 20 µg/mL tryptanthrin can hinder biofilm formation above 50% in various A. baumannii strains. Tryptanthrin impacts various stages of biofilm formation, including the inhibition of surface motility and eDNA release in A. baumannii, as well as an increase in its sensitivity to H202. RT-qPCR analysis reveals that tryptanthrin significantly decreases the expression of the following genes: abaI (19.07%), abaR (33.47%), bfmR (43.41%), csuA/B (64.16%), csuE (50.20%), ompA (67.93%), and katE (72.53%), which are related to biofilm formation and quorum sensing. Furthermore, tryptanthrin is relatively safe and can reduce the virulence of A. baumannii in a Galleria mellonella infection model. Overall, our study demonstrates the potential of tryptanthrin in controlling biofilm formation and virulence of A. baumannii by disrupting different stages of biofilm formation and intercellular signaling communication.

6.
Vaccine ; 42(10): 2707-2715, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38503663

RESUMEN

Avian pathogenic Escherichia coli (APEC) is primarily responsible for causing septicemia, pneumonitis, peritonitis, swollen head syndrome, and salpingitis in poultry, leading to significant losses in the poultry sector, particularly within the broiler industry. The removal of the lpxL and lpxM genes led to an eightfold decrease in the endotoxin levels of wild APEC strains. In this study, mutant strains of lpxL/lpxM and their O1, O2, and O78 wild-type strains were developed for an inactivated vaccine (referred to as the mutant vaccine and the wild-type vaccine, respectively), and the safety and effectiveness of these two prototype vaccines were assessed in white Leghorn chickens. Findings indicated that chickens immunized with the mutant vaccine showed a return of appetite sooner post-immunization and experienced earlier disappearance of nodules at the injection site compared to those immunized with the wild-type vaccine. Pathological examinations revealed that lesions were still present in the liver, lung, and injection site in chickens vaccinated with the wild-type vaccine 14 days post-vaccination (dpv), whereas no lesions were found in chickens vaccinated with the mutant vaccine at 14 dpv. There were no significant differences in antibody levels on the challenge day or in mortality or lesion scores between challenged birds immunized with either the mutant vaccine or the wild-type vaccine at the same dose. In this study, the safety of a single dose or overdose of the mutant vaccine and its efficacy at one dose were evaluated in broilers, and the results showed that the mutant vaccine had no adverse effects on or protected vaccinated broilers from challenge with the APEC O1, O2, or O78 strains. These results demonstrated that the mutant polyvalent inactivated vaccine is a competitive candidate against APEC O1, O2, and O78 infection compared to the wild-type vaccine.


Asunto(s)
Infecciones por Escherichia coli , Vacunas contra Escherichia coli , Enfermedades de las Aves de Corral , Animales , Escherichia coli/genética , Pollos , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Vacunas de Productos Inactivados/efectos adversos
7.
J Virol ; 98(3): e0000724, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38305153

RESUMEN

Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease, which is responsible for enormous economic losses to the global pig industry. Although vaccination has been used to prevent PRV infection, the effectiveness of vaccines has been greatly diminished with the emergence of PRV variants. Therefore, there is an urgent need to develop anti-PRV drugs. Polyethylenimine (PEI) is a cationic polymer and has a wide range of antibacterial and antiviral activities. This study found that a low dose of 1 µg/mL of the 25-kDa linear PEI had significantly specific anti-PRV activity, which became more intense with increasing concentrations. Mechanistic studies revealed that the viral adsorption stage was the major target of PEI without affecting viral entry, replication stages, and direct inactivation effects. Subsequently, we found that cationic polymers PEI and Polybrene interfered with the interaction between viral proteins and cell surface receptors through electrostatic interaction to exert the antiviral function. In conclusion, cationic polymers such as PEI can be a category of options for defense against PRV. Understanding the anti-PRV mechanism also deepens host-virus interactions and reveals new drug targets for anti-PRV.IMPORTANCEPolyethylenimine (PEI) is a cationic polymer that plays an essential role in the host immune response against microbial infections. However, the specific mechanisms of PEI in interfering with pseudorabies virus (PRV) infection remain unclear. Here, we found that 25-kDa linear PEI exerted mechanisms of antiviral activity and the target of its antiviral activity was mainly in the viral adsorption stage. Correspondingly, the study demonstrated that PEI interfered with the virus adsorption stage by electrostatic adsorption. In addition, we found that cationic polymers are a promising novel agent for controlling PRV, and its antiviral mechanism may provide a strategy for the development of antiviral drugs.


Asunto(s)
Antivirales , Herpesvirus Suido 1 , Polietileneimina , Electricidad Estática , Animales , Adsorción/efectos de los fármacos , Antivirales/química , Antivirales/farmacología , Herpesvirus Suido 1/efectos de los fármacos , Herpesvirus Suido 1/metabolismo , Polietileneimina/química , Polietileneimina/farmacología , Seudorrabia/tratamiento farmacológico , Seudorrabia/virología , Porcinos/virología , Enfermedades de los Porcinos/virología
8.
Int J Biol Macromol ; 258(Pt 2): 128990, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38158057

RESUMEN

Plantago asiatica L. (PAL), a traditional herb, has been used in East Asia for thousands of years. In recent years, polysaccharides extracted from PAL have garnered increased attention due to their outstanding pharmacological and biological properties. Previous research has established that PAL-derived polysaccharides exhibit antioxidant, anti-inflammatory, antidiabetic, antitumor, antimicrobial, immune-regulatory, intestinal health-promoting, antiviral, and other effects. Nevertheless, a comprehensive summary of the research related to Plantago asiatica L. polysaccharides (PALP) has not been reported to date. In this paper, we review the methods for isolation and purification, physiochemical properties, structural features, and biological activities of PALP. To provide a foundation for research and application in the fields of medicine and food, this review also outlines the future development prospects of plantain polysaccharides.


Asunto(s)
Plantago , Plantago/química , Antioxidantes/farmacología , Polisacáridos/química , Extractos Vegetales/farmacología , Asia Oriental
9.
Vet Microbiol ; 287: 109897, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37922860

RESUMEN

The infection of porcine circovirus type 2 (PCV2) triggers activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway and leads to DNA damage. Insulin-like growth factor-binding protein 3 (IGFBP3) may interact with the endoplasmic reticulum (ER). It remains unclear whether IGFBP3 regulates DNA damage via ER stress to mediate PCV2 replication. In this study, we observed an upregulation of porcine IGFBP3 expression during PCV2 infection, and overexpression of IGFBP3 enhanced the expression of PCV2 Cap protein, PCV2 DNA copy number, and viral titers in PK-15 B6 cells and 3D4/21 cells. Additionally, overexpression of IGFBP3 induced an increase in the DNA damage marker γH2AX by activating the PERK/eIF2α pathway without concomitant activation of ATF4, IRE1α, and ATF6α/GRP78 pathways in PK-15 B6 cells and 3D4/21 cells. Knockdown of IGFBP3 had a reverse effect on PCV2 replication in PK-15 B6 cells and 3D4/21 cells. Furthermore, treatment with etoposide enhanced PCV2 replication while KU57788 decreased it. GSK2606414 and salubrinal limited both DNA damage and viral replication. Therefore, our findings suggest that porcine IGFBP3 promotes PCV2 replication through the PERK/eIF2α pathway-mediated induction of DNA damage in PK-15 B6 cells and 3D4/21 cells. Our study provides a basis for exploring novel antiviral strategies via the extensive understanding of the relationships between host cellular proteins and viral replication.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Porcinos , Animales , Circovirus/genética , ARN , Proteínas Quinasas , Endorribonucleasas , Línea Celular , Proteínas Serina-Treonina Quinasas , Replicación Viral/genética , Retículo Endoplásmico , Infecciones por Circoviridae/veterinaria
10.
Microbiol Spectr ; : e0213222, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36951571

RESUMEN

Pseudorabies virus (PRV) infection is modulated by various cellular host factors. In this study, we investigated the role of histone deacetylase 6 (HDAC6) in this process. We determined HDAC6 expression in vitro and performed gene knockout, pharmacological inhibition analyses, immunofluorescence assays, and statistical analyses. We found that the pharmacological and genetic inhibition of HDAC6 significantly decreased PRV replication, whereas its overexpression promoted PRV replication. Additionally, we demonstrated that PRV infection can induce the phosphorylation of histone H2AX and lead to DNA damage response (DDR), and the ataxia telangiectasia mutated (ATM) inhibitor KU55933 inhibits DDR and PRV infection. Mechanistically, the HDAC6 inhibitor tubacin and HDAC6 knockout can decrease DDR. The results of this study suggested that HDAC6 may be a crucial factor in PRV-induced ATM-dependent DDR to promote PRV replication. IMPORTANCE Pseudorabies virus (PRV) is a member of the subfamily Alphaherpesvirinae of the family Herpesviridae. PRV infection in swine can lead to high morbidity and mortality of swine, causing huge economic losses. In particular, PRV variants can cause severe damage to the nervous and respiratory systems of humans, revealing that PRV may be a potential zoonotic pathogen. Vaccines for PRV have been developed that can delay or reduce the epidemic, but they currently cannot eliminate this disease completely. Therefore, studies should investigate new targets for the prevention and control of PRV infection. In this study, we demonstrated that HDAC6 can induce ataxia telangiectasia mutated-dependent DNA damage response to foster PRV replication, indicating that HDAC6 is a therapeutic target for PRV infection.

11.
Metabolites ; 12(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36144207

RESUMEN

Elevated concentrations of non-esterified fatty acid (NEFA) induced by negative energy balance (NEB) during the transition period of dairy cows is known to be toxic for multiple bovine cell types. However, the effect of NEFA in bovine mammary epithelial cells (BMECs) remains unclear. The present study aimed to explore the role and molecular mechanism of NEFA in endoplasmic reticulum (ER) stress and the subsequent apoptosis in BMECs. The results showed that NEFA increased ER stress and activated the three unfolded protein response (UPR) signaling sub-pathways by upregulating the expression of GRP78, HSP70, XBP1, ATF6, phosphor-PERK, and phosphor-IRE1α. We also found that NEFA dose-dependently induced apoptosis in BMECs, as indicated by flow cytometry analysis and increased apoptotic gene expression. RNA-seq analysis revealed that NEFA induced apoptosis in BMECs, probably via the ATF4-CHOP axis. Mechanistically, our data showed that NEFA increased reactive oxygen species (ROS) levels, resulting in the activation of the MAPK signaling pathway. Moreover, quercetin, a well-known antioxidant, was found to alleviate ER stress-mediated apoptosis in NEFA-treated BMECs. Collectively, our results suggest that NEFA induces ER stress-mediated apoptosis, probably via the ROS/MAPK signaling pathway, as quercetin has been shown to alleviate ER stress-mediated apoptosis in NEFA-treated BMECs.

12.
Viruses ; 14(8)2022 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-36016393

RESUMEN

Pseudorabies virus (PRV) is one of the most important pathogens causing serious diseases and leads to huge economic losses in the global swine industry. With the continuous emergence of PRV variants and the increasing number of cases of human infection, there is an urgent need to develop antiviral drugs. In this study, we discover that Glycyrrhiza polysaccharide (GCP) has anti-PRV infection activity in vitro, and 600 µg/mL GCP can completely block viral infection. The addition of GCP simultaneously with or after PRV infection had a significant inhibitory effect on PRV. Addition of GCP at different times of the virus life cycle mainly led to the inhibition of the attachment and internalization of PRV but does not affect viral replication and release. Our findings suggest that GCP has potential as a drug against PRV infection.


Asunto(s)
Glycyrrhiza , Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Animales , Línea Celular , Humanos , Polisacáridos/farmacología , Seudorrabia/tratamiento farmacológico , Porcinos , Enfermedades de los Porcinos/tratamiento farmacológico , Acoplamiento Viral , Internalización del Virus
13.
Vet Microbiol ; 272: 109514, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35917623

RESUMEN

Porcine circovirus type 2 (PCV2) is the causative agent of porcine circovirus-associated disease. Changes in host cell gene expression are induced by PCV2 infection. Here, we showed that porcine PDZ Domain-Containing 1 (PDZK1) expression was enhanced during PCV2 infection and that overexpression of PDZK1 inhibited the expression of PCV2 Cap protein. PCV2 genomic DNA copy number and viral titers were decreased in PDZK1-overexpressing PK-15B6 cells. PDZK1 knockdown enhanced the replication of PCV2. Overexpression of PDZK1 activated the phosphoinositide 3-kinase (PI3K)/ERK2 signaling pathway to enhance nitric oxide (NO) levels, while PDZK1 knockdown had the opposite effects. A PI3K inhibitor (LY294002) and a NO synthase inhibitor (L-NAME hydrochloride) decreased the activity of PDZK1 in restricting PCV2 replication. ERK2 knockdown enhanced the proliferation of PCV2 by decreasing levels of NO. Levels of interleukin (IL)- 4 mRNA were reduced in PDZK1 knockdown and ERK2 knockdown PK-15B6 cells. Increased IL-4 mRNA levels were unable to decrease NO production in PDZK1-overexpressing cells. Thus, we conclude that PDZK1 affected PCV2 replication by regulating NO production via PI3K/ERK2 signaling. PDZK1 affected IL-4 expression through the PI3K/ERK2 pathway, but PDZK1 modulation of PCV2 replication occurred independently of IL-4. Our results contribute to understanding the biological functions of PDZK1 and provide a theoretical basis for the pathogenic mechanisms of PCV2.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Animales , Línea Celular , Infecciones por Circoviridae/veterinaria , Circovirus/genética , Interleucina-4 , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasa/farmacología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Mensajero/metabolismo , Porcinos , Replicación Viral
14.
Front Vet Sci ; 9: 896689, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847653

RESUMEN

Variant pseudorabies viruses (vPRV) have constantly emerged in China since late 2011. In the present study, a 1 × 106.0 TCID50 per-animal dosage of a commercially available Bartha-K61 vaccine and an rPRV/XJ5-gI-/gE-/TK- prototype vaccine freshly extracted from the vPRV/XJ-5 at the same dose were administered to evaluate the immune effectiveness thereof on growing pigs to prevent lethal strikes caused by vPRV/XJ-5. The results suggest that the Bartha-K61 vaccine at a dose of 1 × 106.0 TCID50 per animal and the same dosage of the rPRV/XJ5-gI-/gE-/TK- prototype vaccine protected growing pigs against the lethal challenge of vPRV/XJ-5 strain with 100% survive rate. Furthermore, the outcome of the clinical score, virus shedding, weight gain, and viral loads in different pig tissues in these two groups demonstrates that either the Bartha-K61 vaccine or the rPRV/XJ5-gI-/gE-/TK- prototype vaccine at the same dose exhibited parallel efficacy in pigs against the lethal challenge with the XJ-5 strain of vPRV.

15.
Viruses ; 14(4)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35458475

RESUMEN

A pseudorabies virus (PRV) novel virulent variant outbreak occurred in China in 2011. However, little is known about PRV prevention and treatment. Huaier polysaccharide has been used to treat some solid cancers, although its antiviral activity has not been reported. Our study confirmed that the polysaccharide can effectively inhibit infection of PRV XJ5 in PK15 cells. It acted in a dose-dependent manner when blocking virus adsorption and entry into PK15 cells. Moreover, it suppressed PRV replication in PK15 cells. In addition, the results suggest that Huaier polysaccharide plays a role in treating PRV XJ5 infection by directly inactivating PRV XJ5. In conclusion, Huaier polysaccharide might be a novel therapeutic agent for preventing and controlling PRV infection.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Virus no Clasificados , Adsorción , Animales , Línea Celular , Mezclas Complejas , Polisacáridos/farmacología , Trametes
16.
Int J Biol Macromol ; 207: 454-463, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35278510

RESUMEN

Pseudorabies virus (PRV) is an alpha herpesvirus that causes pseudorabies. After 2011, new and more pathogenic PRV variants have caused huge economic losses to the pig industry. In addition, people have been reported to be infected with PRV. Therefore, developing new anti-PRV drugs is of great significance. In this study, we investigated the anti-PRV activity of Hippophae rhamnoides polysaccharides (HRP) in vitro. We found that HRP could significantly inhibit the infectivity of the PRV XJ5 strain in PK15 cells. Addition of HRP at different times of the virus life cycle mainly led to the inhibition of the adsorption and entry of virus into the cells. Our results revealed that HRP can reduce the malondialdehyde (MDA) content and reactive oxygen species (ROS) level in PRV-infected PK15 cells and increase the superoxide dismutase (SOD) activity. These results suggested that HRP can reduce PRV infection-induced oxidative stress. Therefore, HRP may act as an antiviral drug against newly emerging PRV variants.


Asunto(s)
Herpesvirus Suido 1 , Hippophae , Adsorción , Animales , Línea Celular , Humanos , Estrés Oxidativo , Polisacáridos/farmacología , Porcinos
17.
Poult Sci ; 101(4): 101759, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35240354

RESUMEN

Oxidative stress is the downstream of various adverse stresses which impairs meat quality of broiler chickens. Yet, the specific molecular mechanisms of oxidative stress in meat quality of broiler thigh muscle remains unclear. This study investigated the effects and mechanisms of H2O2-induced oxidative stress on meat quality of broiler thigh muscle, with particular emphasis on apoptosis and autophagy and the ROS/NF-κB signaling pathway. The results showed that 10%H2O2-treated broilers exhibited significantly higher drip loss and shear force and lower pH24h and muscle weight. Moreover, the ROS formation, the contents of oxidation products, the expressions of caspases (3, 6, 8, 9), Beclin1, and LC3-II/LC3-I were significantly increased, whereas the levels of antioxidation products and the expression of phosphorylation of NF-κBp65 were significantly decreased. These findings from the present study indicating that H2O2-induced oxidative stress significantly impaired the meat quality by inducing apoptosis and abnormal autophagy via ROS/NF-κB signaling pathway in the broiler thigh muscle.


Asunto(s)
Pollos , Peróxido de Hidrógeno , Carne , Músculo Esquelético , FN-kappa B , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Carne/análisis , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Muslo
18.
Molecules ; 27(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35209042

RESUMEN

Porcine pseudorabies (PR) is an important infectious disease caused by pseudorabies virus (PRV), which poses a major threat to food safety and security. Vaccine immunization has become the main means to prevent and control the disease. However, since 2011, a new PRV variant has caused huge economic losses to the Chinese pig industry. Panax notoginseng polysaccharides have immunomodulatory activity and other functions, but the antiviral effect has not been reported. We studied the anti-PRV activity of Panax notoginseng polysaccharides in vitro. A less cytopathic effect was observed by increasing the concentration of Panax notoginseng polysaccharides. Western blot, TCID50, plaque assay, and IFA revealed that Panax notoginseng polysaccharides could significantly inhibit the infectivity of PRV XJ5 on PK15 cells. In addition, we also found that Panax notoginseng polysaccharides blocked the adsorption and replication of PRV to PK15 cells in a dose-dependent manner. These results show that Panax notoginseng polysaccharides play an antiviral effect mainly by inhibiting virus adsorption and replication in vitro. Therefore, Panax notoginseng polysaccharides may be a potential anti-PRV agent.


Asunto(s)
Herpesvirus Suido 1/fisiología , Factores Inmunológicos/farmacología , Panax notoginseng/química , Polisacáridos/farmacología , Seudorrabia/metabolismo , Enfermedades de los Porcinos/metabolismo , Acoplamiento Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Factores Inmunológicos/química , Polisacáridos/química , Seudorrabia/tratamiento farmacológico , Seudorrabia/patología , Porcinos , Enfermedades de los Porcinos/patología , Enfermedades de los Porcinos/virología
19.
Oxid Med Cell Longev ; 2022: 3570475, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35096266

RESUMEN

Pseudorabies (PR) is an acute infectious disease of various domestic animals and wild animals caused by pseudorabies virus (PRV). It is mainly characterized by fever, itching, encephalomyelitis, and respiratory and neurological disorders. Plantago asiatica polysaccharide (PLP), extracted from the whole plant of Plantago asiatica L., showed immunomodulatory and antioxidation effects, but the antiviral activity had not been reported. In this study, the inhibitory effect of PLP on PRV infection was studied. Our study first revealed that PLP could inhibit PRV infection in a dose-dependent manner. By adding PLP at different stages of the virus's life cycle, we revealed that PLP could reduce the attachment and penetration of PRV into PK15 cells. The inhibition of PRV attachment was better than inhibition of PRV penetration. However, PLP did not affect PRV replication and inactivation. In addition, PLP decreased the intracellular ROS levels in infected cells significantly, and ROS scavenger NAC decreased PRV infection. Therefore, our study provided preliminary data of anti-PRV activity of PLP, which was established to be a novel anti-PRV infection agent.


Asunto(s)
Antivirales/uso terapéutico , Plantago/química , Seudorrabia/virología , Animales , Antivirales/farmacología
20.
Front Pharmacol ; 12: 680674, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295250

RESUMEN

Liquorice is a traditional medicine. Triterpenoids such as glycyrrhizin and glycyrrhetinic acid are the main active constituents of liquorice. Studies have revealed that these compounds exert inhibitory effects on several viruses, including SARS-CoV-2. The main mechanisms of action of these compounds include inhibition of virus replication, direct inactivation of viruses, inhibition of inflammation mediated by HMGB1/TLR4, inhibition of ß-chemokines, reduction in the binding of HMGB1 to DNA to weaken the activity of viruses, and inhibition of reactive oxygen species formation. We herein review the research progress on the antiviral effects of glycyrrhizin and its derivatives. In addition, we emphasise the significance of exploring unknown antiviral mechanisms, structural modifications, and drug combinations in future studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA