Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1231978, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637109

RESUMEN

Soil microorganisms play important roles in promoting soil ecosystem restoration, but much of the current research has been limited to changes in microbial community structure in general, and little is known regarding the soil physicochemical property and microbial community structure. In this study, four organic fertilizers were first prepared based on tea oil camellia shell (TOCS). Our findings indicate that the application of BOFvo increased both total pore volume and BET surface area of the rhizosphere soils, as well there was a remarkable enhancement in total organic matter (TOM), total nitrogen (TN), available nitrogen (AN), total phosphorus (TP), total potassium (TK), and available potassium (AK) contents of the rhizosphere soils. Meanwhile, in comparison to the CK and CF groups, the utilization of BOFvo led to a substantial increase in both average yield and fruiting rate per plant at maturity, as well resulted in a significant increase in TN and TP contents of tea oil camellia leaves. Furthermore, our findings suggest that the application of TOCS-based organic fertilizers significantly enhances the microbial diversity in the rhizosphere soils with Proteobacteria and Ascomycota being the dominant bacterial and fungal phyla, respectively, and Rhodanobacter and Fusarium being the dominant bacterial and fungal genus, respectively. Redundancy analysis (RDA) indicates that the physicochemical characteristics of TOCS-based organic fertilizers had a significant impact on the composition and distribution of microbial communities in the rhizosphere soils. This study will facilitate the promotion and application of TOCS-based organic fertilizers, thereby establishing a foundation for the reuse of tea oil camellia waste resources.

2.
J Org Chem ; 87(21): 14433-14442, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36257064

RESUMEN

A visible-light-induced persulfate-promoted cascade phosphorylation/cyclization reaction to access various phosphorylated pyrrolo[1,2-a]indolediones under mild conditions was developed. Notably, the transformation was carried out with diethyl carbonate/H2O as a green medium at room temperature. More impressively, traditional metal catalysts and photocatalysts could be effectively avoided. The reactions are simple to operate, easy to scale up, and have good functional group tolerance.

3.
Org Lett ; 24(16): 3014-3018, 2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35420829

RESUMEN

1-Acryloyl-2-cyanoindoles were found to be novel and efficient skeletons in visible-light-induced persulfate-promoted cascade cyclization reactions. With this transition-metal-free photocatalytic procedure, various sulfonated/thiocyanated pyrrolo[1,2-a]indolediones were synthesized from 1-acryloyl-2-cyanoindoles with sulfonyl hydrazides/NH4SCN at room temperature under mild reaction conditions.

4.
J Agric Food Chem ; 62(37): 9066-72, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25134952

RESUMEN

In this study, selective degradations of the two enantiomers of indoxacarb in the concentrate (2.33S/1R) and racemate (1S/1R) are examined. The absolute configurations of indoxacarb enantiomers were determined using X-ray diffraction. The results showed that in two alkaline soils, the S-(+)-indoxacarb was preferentially degraded in both the concentrate and racemate. In one acid soil, the two enantiomers degraded no-selectivity. In another acid soil and one neutral soil, the R-(-)-indoxacarb was preferentially degraded in both the concentrate and racemate. Indoxacarb enantiomers were configurationally stable in the five soils, and no interconversion was observed during the incubation. Because no significant difference in degradation was observed after samples were sterilized, the observed enantioselectivity may be attributed primarily to microbial activity in soils. The results indicate that the selective degradation behavior was the same for both formulations that were tested.


Asunto(s)
Insecticidas , Oxazinas/análisis , Oxazinas/química , Suelo/química , Cristalización , Concentración de Iones de Hidrógeno , Estructura Molecular , Oxazinas/metabolismo , Microbiología del Suelo , Estereoisomerismo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA