Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
ACS Omega ; 9(21): 23060-23068, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38826521

RESUMEN

The complex tumor structure and microenvironment such as abnormal tumor vasculature, dense tumor matrix, and elevated interstitial fluid pressure greatly hinder the penetration and retention of therapeutic agents in solid tumors. The development of an advanced method for robust penetration and retention of therapeutic agents in tumors is of great significance for efficient tumor treatments. In this work, we demonstrated that magnetotactic bacteria AMB-1 with hypoxic metabolism characteristics can actively penetrate the tumor to selectively colonize deep hypoxic regions, which emerge as a promising intelligent drug carrier. Furthermore, AMB-1 presents intrinsic second near-infrared (NIR-II) photothermal performance that can efficiently convert a 1064 nm laser into heat for tumor thermal ablation. We believe that our investigations not only develop a novel bacteria-based photothermal agent but also provide useful insights for the development of advanced tumor microbial therapies.

2.
ISA Trans ; 143: 131-143, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37679272

RESUMEN

When the autonomous vehicle (AV) is under various road friction and speed, emergency collision avoidance is extremely difficult. In this situation, the AV may encounter severe understeering problem, so it is hard to achieve collision avoidance, even under the control of active safety system. To tackle this problem, an adaptive collision avoidance strategy (ACAS) is proposed for AV under various road friction and speed. The adaptive performance of the ACAS is realized via three aspects. (1) An adaptive reference path planning method is proposed to provide desired evasive speed and reference path for the AV according to various road friction and reduces the turning burden of AV. (2) A predictive-based fuzzy controller is designed to realize the speed control, and it improves the tracking accuracy of various desired evasive speed. (3) A novel turning enhanced method built with a direct yaw turning controller and a torque distribution method can enhance the turning capability of AV. Finally, the proposed strategy is verified on AV via simulation experiments. The code can be found online here: https://github.com/wangjinlei-hnu/ACAS.

3.
Adv Healthc Mater ; 12(28): e2301437, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37379009

RESUMEN

Apoptosis has gained increasing attention in cancer therapy as an intrinsic signaling pathway, which leads to minimal leakage of waste products from a dying cell to neighboring normal cells. Among various stimuli to trigger apoptosis, mild hyperthermia is attractive but confronts limitations of non-specific heating and acquired resistance from elevated expression of heat shock proteins. Here, a dual-stimulation activated turn-on T1 imaging-based nanoparticulate system (DAS) is developed for mild photothermia (≈43 °C)-mediated precise apoptotic cancer therapy. In the DAS, a superparamagnetic quencher (ferroferric oxide nanoparticles, Fe3 O4 NPs) and a paramagnetic enhancer (Gd-DOTA complexes) are connected via the N6-methyladenine (m6 A)-caged, Zn2+ -dependent DNAzyme molecular device. The substrate strand of the DNAzyme contains one segment of Gd-DOTA complex-labeled sequence and another one of HSP70 antisense oligonucleotide. When the DAS is taken up by cancer cells, overexpressed fat mass and obesity-associated protein (FTO) specifically demethylates the m6 A group, thereby activating DNAzymes to cleave the substrate strand and simultaneously releasing Gd-DOTA complex-labeled oligonucleotides. The restored T1 signal from the liberated Gd-DOTA complexes lights up the tumor to guide the location and time of deploying 808 nm laser irradiation. Afterward, locally generated mild photothermia works in concert with HSP70 antisense oligonucleotides to promote apoptosis of tumor cells. This highly integrated design provides an alternative strategy for mild hyperthermia-mediated precise apoptotic cancer therapy.


Asunto(s)
ADN Catalítico , Compuestos Heterocíclicos , Nanopartículas , Neoplasias , Compuestos Organometálicos , ADN Catalítico/química , Fototerapia , Nanopartículas/química , Oligonucleótidos , Oligonucleótidos Antisentido , Línea Celular Tumoral , Neoplasias/diagnóstico por imagen , Neoplasias/terapia
4.
J Am Chem Soc ; 145(2): 1108-1117, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36622303

RESUMEN

Telomerase has long been considered as a biomarker for cancer diagnosis and a therapeutic target for drug discovery. Detecting telomerase activity in vivo could provide more direct information of tumor progression and response to drug treatment, which, however, is hampered by the lack of an effective probe that can generate an output signal without a tissue penetration depth limit. In this study, using the principle of distance-dependent magnetic resonance tuning, we constructed a telomerase-activated magnetic resonance imaging probe (TAMP) by connecting superparamagnetic ferroferric oxide nanoparticles (SPFONs) and paramagnetic Gd-DOTA (Gd(III) 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) complexes via telomerase-responsive DNA motifs. Upon telomerase-catalyzed extension of the primer in TAMP, Gd-DOTA-conjugated oligonucleotides can be liberated from the surface of SPFONs through a DNA strand displacement reaction, restoring the T1 signal of the Gd-DOTA for a direct readout of the telomerase activity. Here we show that, by tracking telomerase activity, this probe provides consistent monitoring of tumor growth kinetics during progression and in response to drug treatment and enables in situ screening of telomerase inhibitors in whole-animal models. This study provides an alternative toolkit for cancer diagnosis, treatment response assessment, and anticancer drug screening.


Asunto(s)
Telomerasa , Animales , Línea Celular Tumoral , Telomerasa/metabolismo , Cinética , Imagen por Resonancia Magnética
5.
Adv Healthc Mater ; 12(5): e2202043, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36367363

RESUMEN

Photosensitizer in photodynamic therapy (PDT)  accumulates in both tumor and adjacent normal tissue due to low selective biodistribution, results in undesirable side effect with limited clinic application. Herein, an intelligent nanoplatform is reported that selectively acts as reactive oxygen species (ROS) scavenger in normal tissue but as ROS generator in tumor microenvironment (TME) to differentially control ROS level in tumor and surrounding normal tissue during PDT. By down-regulating the produced ROS with dampened cytokine wave in normal tissue after PDT, the nanoplatform reduces the inflammatory response of normal tissue in PDT, minimizing the side effect and tumor metastasis in PDT. Alternatively, the nanoplatform switches from ROS scavenger to generator through the glutathione (GSH) responsive degradation in TME, which effectively improves the PDT efficacy with reduced GSH level and amplified oxidative stress in tumor. Simultaneously, the released Mn ions provide real-time and in situ signal change of magnetic resonance imaging (MRI) to monitor the reversal process of catalysis activity and achieve accurate tumor diagnosis. This TME-responsive ROS scavenger/generator with activable MRI contrast may provide a new dimension for design of next-generation PDT agents with precise diagnosis, high therapeutic efficacy, and low side effect.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno , Distribución Tisular , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Imagen por Resonancia Magnética , Línea Celular Tumoral , Nanopartículas/uso terapéutico , Microambiente Tumoral
6.
Biomater Sci ; 10(22): 6510-6516, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36189964

RESUMEN

Tumor hypoxia is a great physiological barrier for tumor treatment. The development of efficient detection and treatment methods for tumor hypoxia has great scientific and clinical significance. In this work, we investigated the potential of magnetotactic bacteria AMB-1 for magnetic resonance imaging (MRI)-guided magnetic hyperthermia treatment of hypoxic tumors. Our investigations reveal that AMB-1 bacteria can selectively migrate to the hypoxic regions of solid tumors due to their anaerobic characteristics, showing active deep tumor penetrability. Moreover, AMB-1 bacteria exhibit high MRI contrast and magnetic heating performances because of the excellent magnetic performance of their magnetosomes. In vivo studies demonstrate that AMB-1 can not only generate T2-weighted contrast signals in tumor tissue, but also efficiently ablate hypoxic solid tumors through the magnetic hyperthermia effect. We believe that this novel microbial therapy can be a potential weapon for hypoxic tumor treatment.


Asunto(s)
Hipertermia Inducida , Magnetosomas , Neoplasias , Humanos , Neoplasias/terapia , Magnetismo , Bacterias Gramnegativas , Bacterias
7.
J Colloid Interface Sci ; 626: 364-373, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35797871

RESUMEN

Doping Mn (II) ions into iron oxide (IO) as manganese ferrite (MnIO) has been proved to be an effective strategy to improve T1 relaxivity of IO nanoparticle in recent years; however, the high T2 relaxivity of MnIO nanoparticle hampers its T1 contrast efficiency and remains a hurdle when developing contrast agent for early and accurate diagnosis. Herein, we engineered the interfacial structure of IO nanoparticle coated with manganese ferrite shell (IO@MnIO) with tunable thicknesses. The Mn-doped shell significantly improve the T1 contrast of IO nanoparticle, especially with the thickness of ∼0.8 nm. Compared to pristine IO nanoparticle, IO@MnIO nanoparticle with thickness of ∼0.8 nm exhibits nearly 2 times higher T1 relaxivity of 9.1 mM-1s-1 at 3 T magnetic field. Moreover, exclusive engineering the interfacial structure significantly lower the T2 enhancing effect caused by doped Mn (II) ions, which further limits the impairing of increased T2 relaxivity to T1 contrast imaging. IO@MnIO nanoparticles with different shell thicknesses reveal comparable T1 relaxation rates but obvious lower T2 relaxivities and r2/r1 ratios to MnIO nanoparticles with similar sizes. The desirable T1 contrast endows IO@MnIO nanoparticle to provide sufficient signal difference between normal and tumor tissue in vivo. This work provides a detailed instance of interfacial engineering to improve IO-based T1 contrast and a new guidance for designing effective high-performance T1 contrast agent for early cancer diagnosis.


Asunto(s)
Medios de Contraste , Nanopartículas , Medios de Contraste/química , Compuestos Férricos , Nanopartículas Magnéticas de Óxido de Hierro , Imagen por Resonancia Magnética/métodos , Compuestos de Manganeso/química , Nanopartículas/química
8.
Theranostics ; 11(14): 6966-6982, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093865

RESUMEN

Rationale: Sensitive and accurate imaging of cancer is essential for early diagnosis and appropriate treatment. For generally employed magnetic resonance imaging (MRI) in clinic, comprehending how to enhance the contrast effect of T1 imaging is crucial for improving the sensitivity of cancer diagnosis. However, there is no study ever to reveal the clear mechanism of how to enhance the effect of T1 imaging and accurate relationships of influencing factors. Herein, this study aims to figure out key factors that affect the sensitivity of T1 contrast-enhanced MRI (CE-MRI), thereby to realize sensitive detection of tumors with low dose of CAs. Methods: Manganese oxide (MnO) nanoparticles (NPs) with various sizes and shapes were prepared by thermal decomposition. Factors impacting T1 CE-MRI were investigated from geometric volume, surface area, crystal face to r2/r1 ratio. T1 CE-MR imaging of liver, hepatic and subcutaneous tumors were conducted with MnO NPs of different shapes. Results: The surface area and occupancy rate of manganese ions have positive impacts on the sensitivity of T1 CE-MRI, while volume and r2/r1 ratio have negative effects. MnO octahedrons have a high r1 value of 20.07 mM-1s-1 and exhibit an excellent enhanced effect in liver T1 imaging. ZDS coating facilitates tumor accumulation and cellular uptake, hepatic and subcutaneous tumors could be detected with MnO octahedrons at an ultralow dose of 0.4 mg [Mn]/kg, about 1/10 of clinical dose. Conclusions: This work is the first quantitative study of key factors affecting the sensitivity of T1 CE-MRI of MnO nanoparticles, which can serve as a guidance for rational design of high-performance positive MRI contrast agents. Moreover, these MnO octahedrons can detect hepatic and subcutaneous tumors with an ultralow dose, hold great potential for sensitive and accurate diagnosis of cancer with lower cost, less dosages and side effects in clinic.


Asunto(s)
Medios de Contraste/química , Neoplasias Hepáticas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Compuestos de Manganeso/química , Nanopartículas del Metal/química , Óxidos/química , Animales , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/diagnóstico , Masculino , Compuestos de Manganeso/síntesis química , Nanopartículas del Metal/ultraestructura , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Óxidos/síntesis química , Tamaño de la Partícula
9.
Nano Lett ; 21(7): 2926-2931, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33769824

RESUMEN

Tumor hypoxia and the tissue penetration limitation of excitation light hamper the widespread clinical use of photodynamic therapy. The development of new therapeutic strategies that can generate oxygen-independent free radicals without penetration depth limitation is of great demand. Herein, a novel magnetothermodynamic strategy for deep-seated tumor therapy is reported. In this system, a radical initiator (AIPH) was loaded into porous hollow iron oxide nanoparticles (PHIONs). Under the induction of an alternating magnetic field (AMF), PHIONs can generate heat to trigger the release and decomposition of AIPH, resulting in the generation of oxygen-independent alkyl radicals. The resulting alkyl radicals can effectively kill cancer cells under hypoxic conditions. More importantly, this magnetothermally triggered free-radical generator exhibits significant therapeutic efficacy for orthotopic liver tumors in a rat model. This magnetothermodynamic therapy strategy with the advantages of oxygen independence and no limitation of penetration depth holds great promise in deep-seated solid tumor treatment.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Animales , Radicales Libres , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Ratas , Especies Reactivas de Oxígeno , Hipoxia Tumoral
10.
ISA Trans ; 112: 176-185, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33349454

RESUMEN

Path planning is a basic function for autonomous vehicle (AV). However, it is difficult to adapt to different velocities and different types of obstacles including dynamic obstacle and static obstacle (such as road boundary) for AV. To solve the problem of path planning under different velocities and different types of obstacles, a two potential fields fused adaptive path planning system (TPFF-APPS) which includes two parts, a potential field fusion controller and an adaptive weight assignment unit, is presented in this work. In the potential field fusion controller, a novel potential velocity field is built by velocity information and fused with a traditional artificial potential field for adapting various velocities. The adaptive weight assignment unit is designed to distribute adaptively the weights of two potential fields for adapting different types of obstacles at the same time, including road boundary and dynamic obstacles. The simulation is carried on the Carsim-Matlab co-simulation platform, and the simulation results indicate that the proposed TPFF-APPS has excellent performance for path planning adapting to different velocities and different types of obstacles.

11.
ACS Appl Mater Interfaces ; 13(1): 306-311, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33382584

RESUMEN

Photothermal therapy is a new type of tumor therapy with great potential. An ideal photothermal therapy agent should have high photothermal conversion effect, low biological toxicity, and degradability. The development of novel photothermal therapy agents with these properties is of great demand. In this study, we synthesized boron quantum dots (BQDs) with an ultrasmall hydrodynamic diameter. Both in vitro and in vivo studies show that the as-synthesized BQDs have good biological safety, high photoacoustic imaging performance, and photothermal conversion ability, which can be used for photoacoustic imaging-guided photothermal agents for tumor treatment. Our investigations confirm that the BQDs hold great promise in tumor theranostic applications.


Asunto(s)
Boro/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Puntos Cuánticos/uso terapéutico , Animales , Boro/química , Línea Celular Tumoral , Ratones Endogámicos BALB C , Técnicas Fotoacústicas/métodos , Terapia Fototérmica/métodos , Puntos Cuánticos/química , Nanomedicina Teranóstica/métodos
12.
Artículo en Inglés | MEDLINE | ID: mdl-33006928

RESUMEN

Recently, super-harmonic ultrasound imaging technology has caused much attention due to its capability of distinguishing microvessels from the tissues surrounding them. However, the fabrication of a dual-frequency confocal transducer is still a challenge. In this work, 270- [Formula: see text] PMN-PT single crystal 1-3 composite and 28- [Formula: see text] PVDF thick film, acting as transmission layer and receiving layer, respectively, are integrated in a novel co-focusing structure. To realize delicate wave propagation control, microwave transmission line theory is introduced to design such structure. Two acoustic filter layers, 13- [Formula: see text] copper layer and 39- [Formula: see text] Epoxy 301 layer, are indispensable and should be added between two piezoelectric layers. Therefore, an acoustic issue can be overcome via an electrical method and the successful achievement of a dual-frequency (5 MHz/30 MHz) ultrasound transducer with a confocal distance of 8 mm can be realized. The super-harmonic ultrasound imaging experiment is conducted using this kind of device. The 3-D image of 110- [Formula: see text]-diameter phantom tube injected with microbubbles can be obtained. These promising results demonstrate that this novel dual-frequency (5 MHz/30 MHz) confocal ultrasound transducer is potentially usable for microvascular medical imaging application in the future.


Asunto(s)
Microburbujas , Transductores , Microvasos/diagnóstico por imagen , Fantasmas de Imagen , Ultrasonografía
13.
J Nanosci Nanotechnol ; 20(12): 7406-7411, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32711607

RESUMEN

In this study, we investigated the hyperthermia efficiency of magnetic hyperthermia therapy (MHT), photo-thermal therapy (PTT), and the combination of both techniques by employing SPIO-based magneto-nanomicelles as the heating agents. Magneto-nanomicelles in aqueous suspension were exposed to 808-nm laser irradiation (PTT mode), alternating magnetic field (MHT mode), and both modalities (DUAL mode). All the three methods can offer effective temperature increases (above 20 °C). DUAL-mode resulted in an approximately 2-fold increase in heating efficiency (36 °C) compared with PTT or MHT alone. For in vivo experiments, a total of 24 Lewis carcinoma-bearing mice were randomly divided into four groups: the control group (no therapy), PTT, MHT, and DUAL group. In the three therapy groups, magneto-nanomicelles were injected into the tumor and the corresponding treatment measures were performed every other day for a total of three times each. MRI scans were used to calculate tumor volume after each treatment. One-way analysis of variance (ANOVA) was employed to compare the curative effect of different treatment groups. Compared with the control group, PTT, MHT, and DUAL groups all showed a significant inhibitory effect on tumor volume (P < 0.05). In the DUAL group, the mean tumor volume was smaller than that of the PTT or the MHT group. Our work demonstrated that hyperthermia using SPIO-based magnetonanomicelles has a remarkable suppressive effect in anticancer therapy. Moreover, the combined model of hyperthermia in vivo can achieve synthetic effects with shorter healing time by using the same magneto-nanomicelles.


Asunto(s)
Hipertermia Inducida , Neoplasias , Animales , Línea Celular Tumoral , Campos Magnéticos , Ratones , Neoplasias/terapia
14.
Chem Sci ; 10(5): 1555-1561, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30809374

RESUMEN

Development of exosome-based delivery systems is still facing some formidable challenges, including the lack of standardized isolation and purification methods, non-large-scale production and low drug-loading efficiency. Inspired by biomimetic technologies, we turned to the design of artificial chimeric exosomes (ACEs) constructed by integrating cell membrane proteins from multiple cell types into synthetic phospholipid bilayers. For benchmarking, hybrid membrane proteins derived from red blood cells (RBCs) and MCF-7 cancer cells were selected as models. The resulting ACEs were engineered much like "Emperor Qin's Terra-Cotta Warriors", simultaneously equipped with armor (anti-phagocytosis capability from RBCs) and dagger-axes (homologous targeting ability from cancer cells). ACEs demonstrated higher tumor accumulation, lower interception and better antitumor therapeutic effect than plain liposomes in vivo, alongside large-scale standardized preparation, stable structure, high drug-loading capacity and custom-tailored functionality, highlighting the suitability of ACEs as promising alternatives of exosomes in clinical applications.

15.
Chem Commun (Camb) ; 55(6): 850-853, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30601515

RESUMEN

In this work, we directly coated a layer of tannic acid (TA)-Mn2+ chelate networks on black phosphorus (BP) nanosheets (BPNSs) via a simple one-step method. The as-synthesized TA-Mn2+ chelate-coated BPNSs (BPNS@TA-Mn) have excellent T1 MRI contrast enhancement capability, good photoacoustic imaging performance, and high photothermal conversion efficiency, showing great potential in imaging-guided photothermal therapy.

16.
ACS Nano ; 13(2): 2103-2113, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30642157

RESUMEN

The exploitation of gas therapy platforms holds great promise as a "green" approach for selective cancer therapy, however, it is often associated with some challenges, such as uncontrolled or insufficient gas generation and unclear therapeutic mechanisms. In this work, a gas therapy approach based on near-infrared (NIR) light-triggered sulfur dioxide (SO2) generation was developed, and the therapeutic mechanism as well as in vivo antitumor therapeutic efficacy was demonstrated. A SO2 prodrug-loaded rattle-structured upconversion@silica nanoparticles (RUCSNs) was constructed to enable high loading capacity without obvious leakage and to convert NIR light into ultraviolet light so as to activate the prodrug for SO2 generation. In addition, SO2 prodrug-loaded RUCSNs showed high cell uptake, good biocompatibility, intracellular tracking ability, and high NIR light-triggered cytotoxicity. Furthermore, the cytotoxic SO2 was found to induce cell apoptosis accompanied by the increase of intracellular reactive oxygen species levels and the damage of nuclear DNA. Moreover, efficient inhibition of tumor growth was achieved, associated with significantly prolonged survival of mice. Such NIR light-triggered SO2 therapy may provide an effective strategy to stimulate further development of synergistic cancer therapy platforms.


Asunto(s)
Antineoplásicos/farmacología , Profármacos/farmacología , Dióxido de Azufre/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Gases/síntesis química , Gases/química , Gases/farmacología , Células HeLa , Humanos , Rayos Infrarrojos , Células MCF-7 , Ratones , Nanopartículas/química , Tamaño de la Partícula , Profármacos/síntesis química , Profármacos/química , Dióxido de Silicio/química , Dióxido de Azufre/síntesis química , Dióxido de Azufre/química
17.
RSC Adv ; 9(52): 30581-30584, 2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-35530245

RESUMEN

In this work, the potential of FeP nanoparticles as a pH-responsive T 1 contrast agent was investigated. The FeP nanoparticles have good biocompatibility and can significantly amplify T 1 magnetic resonance signals in response to the acidic microenvironment of solid tumors, holding great promise in serving as an acid-activatable T 1 contrast agent for tumor imaging.

18.
Biosens Bioelectron ; 120: 137-143, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30195087

RESUMEN

Cholesterol is an essential compound for maintaining cellular homeostasis and human healthy. Sensitive detection of cholesterol and efficient elimination of excess cholesterol have become the essential manipulations in clinical diagnosis and health management. To date, it is still quite challenging that cholesterol detection and elimination tasks are carried out simultaneously. In this study, bifunctional magnetic nanoparticles (Fe3O4@PDA-PBA-CD) are designed and fabricated to overcome this difficulty. Taking advantages of competitive host-guest interaction and magnetic separation, highly efficient, reusable and simultaneous cholesterol detection and elimination can be achieved. The limit of detection is determined to be 4.3 nM, which is comparable or even lower than existing methods. The distinguished performance may attribute to the high loading efficiency and magnetic enrichment of nanoparticles. Besides, this efficient strategy is resistant to interfering substances, thus realizing sensitive cholesterol detection in real sample. Simultaneously, the bifunctional magnetic nanoparticles also have up to 95% cholesterol elimination efficiency, which is higher than previous reported methods. Furthermore, the nanoparticles are turned out to be reusable within 5 times without noticeable loss in cholesterol elimination efficiency. Therefore, the bifunctional magnetic nanoparticles fabricated here could hold great potential for simultaneous cholesterol detection and elimination in practical applications.


Asunto(s)
Técnicas Biosensibles/métodos , Colesterol/sangre , Colesterol/aislamiento & purificación , Nanopartículas de Magnetita/química , Técnicas Biosensibles/instrumentación , Humanos , Límite de Detección
19.
Chem Commun (Camb) ; 54(62): 8579-8582, 2018 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-30019046

RESUMEN

We report the synthesis of two-dimensional Te nanosheets through a facile liquid exfoliation method. The as-synthesized Te nanosheets can produce reactive oxygen species under light irradiation and show high photoacoustic imaging performance due to their strong near-infrared absorbance, and can be engineered as a nanoplatform for simultaneous photoacoustic imaging and photodynamic therapy.

20.
Small ; 14(4)2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29171713

RESUMEN

Black phosphorus (BP) nanomaterials have emerged as rapidly rising stars in the field of nanomedicine. In this work, BP quantum dots (BPQDs) are synthesized and their potential as photosensitizers is investigated for the first time. The BPQDs present good stability in physiological medium and no appreciable cytotoxicity. More importantly, the BPQDs can be rapidly eliminated from the body in their intact form via renal clearance due to their ultrasmall hydrodynamic diameter (5.4 nm). Both in vitro and in vivo studies indicate that the BPQDs have excellent photodynamic effect under light irradiation that can effectively generate reactive oxygen species to kill cancer cells. The BPQDs thus can serve as biocompatible and powerful photosensitizers for efficient photodynamic therapy.


Asunto(s)
Riñón/metabolismo , Fósforo/química , Fotoquimioterapia/métodos , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo , Animales , Humanos , Fármacos Fotosensibilizantes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA