Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Sci Food Agric ; 102(4): 1665-1673, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34453751

RESUMEN

BACKGROUND: Enzyme injection is vital for improving the sensory attributes and processing characteristics of meat products by enhancing proteolysis. However, studies regarding the appropriate dose addition for accelerating protein degradation in grass carp are minimal. This study aimed to investigate the impact of Flavourzyme® on the flavor quality and antioxidant activity of salted grass carp via brine injection and brining. RESULTS: Flavourzyme was added at doses of 0, 5, 10, 20, and 30 leucine aminopeptidase units (LAPU) per kilogram of raw meat. The results indicated that adding Flavourzyme promoted proteolysis, which was reflected by the enhanced total free amino acid content (from 3.7414 g kg-1 to 4.9160 g kg-1 in the brining group and from 3.8039 g kg-1 to 5.4061 g kg-1 in the injection group) and a decrease in salt soluble and insoluble protein (P < 0.05). The antioxidant activity was improved, and the thiobarbituric acid reactive substance value in salted carp decreased due to the higher content of the protein hydrolysis product (P < 0.05). All sensory attributes were improved significantly, especially when using brine injection (P < 0.05). Brine injection was helpful to diffuse the Flavourzyme, resulting in stronger proteolysis. CONCLUSION: The appropriate Flavourzyme dose was 10 LAPU kg-1 in the injection group and 20 LAPU kg-1 in the brining group. Therefore, moderate Flavourzyme addition was excellent in improving sensory attributes and storage characteristics, whereas injection represented a novel method to obtain a similar fish meat quality in a shorter time and with less added Flavourzyme. © 2021 Society of Chemical Industry.


Asunto(s)
Carpas , Animales , Antioxidantes , Endopeptidasas , Sales (Química)
2.
J Food Biochem ; 45(11): e13946, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34569068

RESUMEN

The study aims to obtain the information on taste and odor among different edible parts (white dorsal meat, white abdomen meat, white tail meat, and dark meat) of bighead carp. The results showed that the white dorsal meat and white abdomen meat had the higher content of total amino acids among all edible parts of bighead carp samples. The highest inosine monophosphate and adenosine monophosphate content presented in white abdomen meat, and the highest equivalent umami concentration value presented in dark meat. The principal component analysis result of electronic tongue and electronic nose showed significant differences in the overall taste and odor characteristics among four group samples. Additionally, 41, 30, 42, and 29 volatile compounds were identified by headspace solid-phase microextraction/gas chromatography-mass spectrometry among white dorsal meat, white abdomen meat, white tail meat, and dark meat of bighead carp, respectively. Based on the data of relative olfactory activity value (ROAV ≥ 1), 12 relative olfactory activity compounds may mainly contribute to the overall odor of bighead carp, including 2-methylbutanal, hexanal, heptanal, (E)-2-octenal, nonanal, dodecanal, undecanal, decanal, 3-methyl-1-pentanol, 1-octen-3-ol, (Z)-2-octen-1-ol, and eucalyptol. Furthermore, according to the Partial Least Squares Discriminant Analysis profile derived from the ROAV of 12 characteristic volatile compounds, significant variations in the odor of different edible parts of bighead carp. Overall, there was a significant difference in taste and odor among different edible parts of bighead carp, and this study may provide useful information for unraveling the flavor characteristics of each edible part of raw bighead carp. PRACTICAL APPLICATIONS: The comprehensive information on taste and odor among different edible parts (white dorsal meat, white abdomen meat, white tail meat, and dark meat) of bighead carp were obtained using liquid chromatography-mass spectrometry, automatic amino acid analyzer, electronic tongue (E-tongue), headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS), and electronic nose (E-tongue), respectively. This study may provide useful information for unraveling the flavor characteristics of each edible part of raw bighead carp and improving the flavor of bighead carp products.


Asunto(s)
Carpas , Compuestos Orgánicos Volátiles , Animales , Nariz Electrónica , Aromatizantes , Gusto
3.
J Sci Food Agric ; 101(10): 4033-4041, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33349966

RESUMEN

BACKGROUND: Among various cooking methods, steaming is favored by many because it can cause less damage to nutrient components in muscle, retain the inherent food flavor, and reduce the generation of harmful substances. Steaming conditions are closely related to fish flavor, fat and protein oxidation, and digestibility. RESULTS: The black carp steamed for 4 to 14 min was studied in this article based on sensory assessment, electronic tongue, free amino acids, adenosine triphosphate (ATP)-related compounds, total nitrogen and non-protein nitrogen to explore the effect of steaming time on the taste substances and protein degradation of pickled black carp. The experimental result showed that the meat steamed within 8 min tasted better, showing high tastiness. The sensory assessment score increased significantly to the maximum value of 82.33 at 6 min. The content of umami and sweet amino acids increased significantly to the maximum value of 1.6801 g kg-1 at 6 min. In the meantime, the IMP (inosine monophosphate) content was 1.9128 g kg-1 , with its taste activity value (TAV) reaching 7.65, which proved that IMP affected the taste most. Furthermore, the total nitrogen content was 30.77 g kg-1 , which meant protein degraded a great deal. Based on equivalent umami concentration (EUC) and its TAV, the meat tasted best at 6-8 min. The longer the steaming time, the faster the protein degradation and the more the flavor precursors. CONCLUSION: The black carp pickled products (with a weight of 20 g, with the size of 3 cm × 3 cm × 2 cm) is suggested to be steamed for 6 to 8 min. This conclusion provides a theoretical basis for its better taste quality. © 2020 Society of Chemical Industry.


Asunto(s)
Culinaria/métodos , Productos Pesqueros/análisis , Proteínas de Peces/química , Aromatizantes/química , Aminoácidos/química , Animales , Cyprinidae , Nariz Electrónica , Calor , Humanos , Gusto
4.
Food Sci Nutr ; 8(6): 2968-2983, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32566215

RESUMEN

The research on the quality changes of grass carp during brine salting with 6%, 8%, and 10% salt additions was evaluated by chemical and physical indicators, as well as a sensory assessment and microbiological analysis. The NaCl content was proportional to salt addition and salting time. The increase of salt addition could lead to the increase of hardness and chewiness in which change trends were contrary to the pH within 24 hr. All K values were less than 10% during brine salting. The effect of 8% salt additions on free amino acids was relatively smaller. Higher levels of salt additions could inhibit bacterial growth. Combined with sensory assessment, equivalent umami concentration (EUC), and taste activity value (TAV) to analysis comprehensively, it was suggested that grass carp meat should be eaten at 4-8 hr of brine salting with 8% salt additions or processed for the next step, in which the grass carp meat had a better taste and quality.

5.
Inflammation ; 39(3): 1177-87, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27106477

RESUMEN

Transport of high-mobility group box 1 (HMGB1), a highly conserved non-histone DNA-binding protein, from the nucleus to the cytoplasm is induced by lipopolysaccharide (LPS). Secretion of HMGB1 appears to be a key lethal factor in sepsis, so it is considered to be a therapeutic target. Previous studies have suggested that paeonol (2'-hydroxy-4'-methoxyacetophenone), an active compound of Paeonia lactiflora Pallas, exerts anti-inflammatory effects. However, the effect of paeonol on HMGB1 is unknown. Here, we investigated the effect of paeonol on the expression, location, and secretion of HMGB1 in LPS-induced murine RAW264.7 cells. ELISA revealed HMGB1 supernatant concentrations of 615 ± 30 ng/mL in the LPS group and 600 ± 45, 560 ± 42, and 452 ± 38 ng/mL in cells treated with 0.2, 0.6, or 1 mM paeonol, respectively, suggesting that paeonol inhibits HMGB1 secretion induced by LPS. Immunohistochemistry and Western blotting revealed that paeonol decreased cytoplasmic HMGB1 and increased nuclear HMGB1. Chromatin immunoprecipitation microarrays suggested that HMGB1 relocation to the nucleus induced by paeonol might depress the action of Janus kinase/signal transducers and activators of transcription, chemokine, and mitogen-activated protein kinase pro-inflammatory signaling pathways. Paeonol was also found to inhibit tumor necrosis factor-α promoter activity in a dose-dependent manner. These results indicate that paeonol has the potential to be developed as a novel HMGB1-targeting therapeutic drug for the treatment of inflammatory diseases.


Asunto(s)
Acetofenonas/farmacología , Proteína HMGB1/metabolismo , Transporte de Proteínas/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteína HMGB1/efectos de los fármacos , Lipopolisacáridos/farmacología , Ratones , Regiones Promotoras Genéticas/efectos de los fármacos , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/genética
6.
Int Immunopharmacol ; 13(3): 331-40, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22561446

RESUMEN

This study aimed to explore the effect and mechanism of H. cordata vapor extract on acute lung injury (ALI) and rapid pulmonary fibrosis (RPF). We applied the volatile extract of HC to an RPF rat model and analyzed the effect on ALI and RPF using hematoxylin-eosin (H&E) staining, routine blood tests, a cell count of bronchoalveolar lavage fluid (BALF), lactate dehydrogenase (LDH) content, van Gieson (VG) staining, hydroxyproline (Hyp) content and the dry/wet weight ratio. The expression of IFN-γ/STAT(1), IL-4/STAT(6) and TGF-ß(1)/Smads was analyzed using ELISA, immunohistochemistry and western blotting methods. The active ingredients of the HC vapor extract were analyzed using a gas chromatograph-mass spectrometer (GC-MS), and the effects of the active ingredients of HC on the viability of NIH/3T3 and RAW264.7 cells were detected using an MTT assay. The active ingredients of the HC vapor extract included 4-terpineol, α-terpineol, l-bornyl acetate and methyl-n-nonyl ketone. The results of the lung H&E staining, Hyp content, dry/wet weight ratio and VG staining suggested that the HC vapor extract repaired lung injury and reduced RPF in a dose-dependent manner and up-regulated IFN-γ and inhibited the TGF-ß1/Smad pathway in vivo. In vitro, it could inhibit the viability of RAW264.7 and NIH/3T3 cells. It also dose-dependently inhibited the expression of TGF-ß1 and enhanced the expression of IFN-γ in NIH/3T3. The HC vapor extract inhibited LPS-induced RPF by up-regulating IFN-γ and inhibiting the TGF-ß1/Smad pathway.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Houttuynia , Fibrosis Pulmonar/prevención & control , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/prevención & control , Animales , Línea Celular , Dexametasona/farmacología , Medicamentos Herbarios Chinos/química , Femenino , Houttuynia/química , Interferón gamma/metabolismo , Interleucina-4/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Ratones , Células 3T3 NIH , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/metabolismo , Ratas , Ratas Wistar , Factor de Transcripción STAT6/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA