Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
iScience ; 27(5): 109510, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38660406

RESUMEN

Myocardial ischemia-reperfusion (I/R) injury stands out among cardiovascular diseases, and current treatments are considered unsatisfactory. For cardiomyocytes (CMs) in ischemic tissues, the upregulation of Limb-bud and Heart (LBH) and αB-crystallin (CRYAB) and their subsequent downregulation in the context of cardiac fibrosis have been verified in our previous research. Here, we focused on the effects and mechanisms of activated LBH-CRYAB signaling on damaged CMs during I/R injury, and confirmed the occurrence of mitochondrial apoptosis and ferroptosis during I/R injury. The application of inhibitors, ectopic expression vectors, and knockout mouse models uniformly verified the role of LBH in alleviating both apoptosis and ferroptosis of CMs. p53 was identified as a mutual downstream effector for both LBH-CRYAB-modulated apoptosis and ferroptosis inhibition. In mouse models, LBH overexpression was confirmed to exert enhanced cardiac protection against I/R-induced apoptosis and ferroptosis, suggesting that LBH could serve as a promising target for the development of I/R therapy.

2.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37631016

RESUMEN

The structure proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), such as nucleocapsid protein (N protein) and envelop protein (E protein), are considered to be the critical pro-inflammatory factors in coronavirus disease 2019 (COVID-19). Vitamin K3 has been reported to exert an anti-inflammatory effect. In this study, we investigated the protective effects of vitamin K3 on SARS-CoV-2 N protein induced-endothelial activation and SARS-CoV-2 E protein induced-cell death in THP-1 cells. The results showed that vitamin K3 reduced N protein-induced monocyte adhesion, suppressed the expression of adhesion molecules, and decreased the mRNA levels of pro-inflammatory cytokines in HLMECs. We confirmed that the effects of vitamin K3 on endothelial activation may be related to the inhibition of the NF-κB signal pathway. In addition, vitamin K3 reversed E protein-induced pyroptosis, inhibited NLRP3/GSDMD signal pathway and reduced the mRNA expression of pro-inflammatory cytokines in THP-1 cells. Our results also showed the protective effects of vitamin K3 on the SARS-CoV-2 structural protein-induced THP-1 cells pyroptosis and endothelial activation via NF-κB signaling pathway. These findings suggested that vitamin K3 potently suppressed the inflammatory response to prevent endothelial activation and monocyte pyroptosis induced by SARS-CoV-2 proteins. This may provide a new strategy for the treatment of COVID-19.

3.
Biochem Cell Biol ; 101(4): 303-312, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36927169

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an emerging pathogenic coronavirus, has been reported to cause excessive inflammation and dysfunction in multiple cells and organs, but the underlying mechanisms remain largely unknown. Here we showed exogenous addition of SARS-CoV-2 envelop protein (E protein) potently induced cell death in cultured cell lines, including THP-1 monocytic leukemia cells, endothelial cells, and bronchial epithelial cells, in a time- and concentration-dependent manner. SARS-CoV-2 E protein caused pyroptosis-like cell death in THP-1 and led to GSDMD cleavage. In addition, SARS-CoV-2 E protein upregulated the expression of multiple pro-inflammatory cytokines that may be attributed to activation of NF-κB, JNK and p38 signal pathways. Notably, we identified a natural compound, Ruscogenin, effectively reversed E protein-induced THP-1 death via inhibition of NLRP3 activation and GSDMD cleavage. In conclusion, these findings suggested that Ruscogenin may have beneficial effects on preventing SARS-CoV-2 E protein-induced cell death and might be a promising treatment for the complications of COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Células Endoteliales , Piroptosis/fisiología
4.
Eur J Pharmacol ; 946: 175666, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36944380

RESUMEN

Endotoxemia is a disease characterized by systemic inflammatory responses and organ injury caused by lipopolysaccharide (LPS) infection, with high mortality. Nicaraven (AVS), a potent hydroxyl radical scavenger, has been proven to regulate the inflammatory response in tumors. To investigate the protective effects and mechanisms of AVS in endotoxemia, mice were injected intraperitoneally with LPS to induce endotoxemia. AVS treatment significantly decreased the levels of pro-inflammatory cytokines in the serum, reduced neutrophil infiltration, attenuated multiple organ injury, and increased the survival rate in LPS-challenged mice. In the LPS-induced inflammatory model of macrophages, AVS inhibited macrophage activation, suppressed nitric oxide (NO) production, and inhibited the expression and secretion of pro-inflammatory cytokines. Mechanistically, AVS treatment up-regulated silence information regulator transcript-1 (Sirt1) expression in a time- and dose-dependent manner. AVS treatment activated the AMP-dependent protein kinase (AMPK)/Sirt1 signaling pathway and suppressed the activation of nuclear factor kappa B (NF-κB) in macrophages exposed to LPS. However, the anti-inflammatory effects of AVS could be reversed by the AMPK, the Sirt1 inhibitor, or the histone deacetylase inhibitor. We confirmed that the AMPK inhibitor inhibited AVS-mediated AMPK/Sirt1 activation and NF-κB p65 acetylation. These results suggested that AVS alleviated endotoxemia by activating the AMPK/Sirt1 signaling pathway in macrophages.


Asunto(s)
Endotoxemia , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Sirtuina 1/metabolismo , Endotoxemia/inducido químicamente , Endotoxemia/complicaciones , Endotoxemia/metabolismo , Lipopolisacáridos/metabolismo , Transducción de Señal , Macrófagos , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Inflamación/inducido químicamente , Citocinas/metabolismo
5.
Stem Cell Res Ther ; 12(1): 364, 2021 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174964

RESUMEN

BACKGROUND: Obesity is a metabolic disorder syndrome characterized by excessive fat accumulation that is related to many diseases. Human amniotic mesenchymal stem cells (hAMSCs) have a great potential for cell-based therapy due to their characteristics such as pluripotency, low immunogenicity, no tumorigenicity, potent paracrine effects, and no ethical concern. Recently, we observed that both hAMSCs and their conditioned medium (hAMSCs-CM) efficiently repaired skin injury, inhibited hepatocellular carcinoma, and alleviated high-fat diet (HFD)-induced diabetes. However, the effects and the underlying mechanisms of hAMSCs-CM on high-fat diet (HFD)-induced obesity were not explored. METHODS: The characteristics of hAMSCs were confirmed by flow cytometry, RT-PCR, and immunofluorescence. Obese mice were induced by administrating HFD for 15 weeks and simultaneously, the mice were intraperitoneally injected with hAMSCs-CM weekly to evaluate the effects of hAMSCs-CM on HFD-induced obesity. GTT and ITT assays were used to assess the effects of hAMSCs-CM on HFD-induced glucose tolerance and insulin resistance. The lipid accumulation and adipocytes hypertrophy in mouse adipose tissues were determined by histological staining, in which the alterations of blood lipid, liver, and kidney function were also examined. The role of hAMSCs-CM in energy homeostasis was monitored by examining the oxygen consumption (VO2), carbon dioxide production (VCO2), and food and water intake in mice. Furthermore, the expressions of the genes related to glucose metabolism, fatty acid ß oxidation, thermogenesis, adipogenesis, and inflammation were determined by western blot analysis, RT-PCR, and immunofluorescence staining. The roles of hAMSCs-CM in adipogenesis and M1/M2 macrophage polarization were investigated with 3T3-L1 preadipocytes or RAW264.7 cells in vitro. RESULTS: hAMSCs-CM significantly restrained HFD-induced obesity in mice by inhibiting adipogenesis and lipogenesis, promoting energy expenditure, and reducing inflammation. The underlying mechanisms of the anti-obesity of hAMSCs-CM might be involved in inhibiting PPARγ and C/EBPα-mediated lipid synthesis and adipogenesis, promoting GLUT4-mediated glucose metabolism, elevating UCP1/PPARα/PGC1α-regulated energy expenditure, and enhancing STAT3-ARG1-mediated M2-type macrophage polarization. CONCLUSION: Our studies demonstrated that hAMSCs significantly alleviated HFD-induced obesity through their paracrine effects. Obviously, our results open up an attractive therapeutic modality for the prevention and treatment of obesity and other metabolic disorders clinically. The cytokines, exosomes, or micro-vesicles secreted from hAMSCs significantly inhibited HFD-induced obesity in mice by inhibiting lipid production and adipogenesis, promoting energy consumption, and reducing inflammation.


Asunto(s)
Dieta Alta en Grasa , Células Madre Mesenquimatosas , Células 3T3-L1 , Adipogénesis , Animales , Medios de Cultivo Condicionados/farmacología , Dieta Alta en Grasa/efectos adversos , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA