Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nat Plants ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997433

RESUMEN

Rice is one of the most important staple food and model species in plant biology, yet its quantitative proteomes are largely uncharacterized. Here we quantify the relative protein levels of over 15,000 genes across major rice tissues using a tandem mass tag strategy followed by intensive fractionation and mass spectrometry. We identify tissue-specific and tissue-enriched proteins that are linked to the functional specificity of individual tissues. Proteogenomic comparison of rice and Arabidopsis reveals conserved proteome expression, which differs from mammals in that there is a strong separation of species rather than tissues. Notably, profiling of N6-methyladenosine (m6A) across the rice major tissues shows that m6A at untranslated regions is negatively correlated with protein abundance and contributes to the discordance between RNA and protein levels. We also demonstrate that our data are valuable for identifying novel genes required for regulating m6A methylation. Taken together, this study provides a paradigm for further research into rice proteogenome.

2.
EMBO J ; 42(13): e113033, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36896912

RESUMEN

Mitophagy is a fundamental quality control mechanism of mitochondria. Its regulatory mechanisms and pathological implications remain poorly understood. Here, via a mitochondria-targeted genetic screen, we found that knockout (KO) of FBXL4, a mitochondrial disease gene, hyperactivates mitophagy at basal conditions. Subsequent counter screen revealed that FBXL4-KO hyperactivates mitophagy via two mitophagy receptors BNIP3 and NIX. We determined that FBXL4 functions as an integral outer-membrane protein that forms an SCF-FBXL4 ubiquitin E3 ligase complex. SCF-FBXL4 ubiquitinates BNIP3 and NIX to target them for degradation. Pathogenic FBXL4 mutations disrupt SCF-FBXL4 assembly and impair substrate degradation. Fbxl4-/- mice exhibit elevated BNIP3 and NIX proteins, hyperactive mitophagy, and perinatal lethality. Importantly, knockout of either Bnip3 or Nix rescues metabolic derangements and viability of the Fbxl4-/- mice. Together, beyond identifying SCF-FBXL4 as a novel mitochondrial ubiquitin E3 ligase restraining basal mitophagy, our results reveal hyperactivated mitophagy as a cause of mitochondrial disease and suggest therapeutic strategies.


Asunto(s)
Enfermedades Mitocondriales , Mitofagia , Ratones , Animales , Mitofagia/fisiología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(2): e2215449120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595691

RESUMEN

Fluid clearance mediated by lymphatic vessels is known to be essential for lung inflation and gas-exchange function during the transition from prenatal to postnatal life, yet the molecular mechanisms that regulate lymphatic function remain unclear. Here, we profiled the molecular features of lymphatic endothelial cells (LECs) in embryonic and postnatal day (P) 0 lungs by single-cell RNA-sequencing analysis. We identified that the expression of c-JUN is transiently upregulated in P0 LECs. Conditional knockout of Jun in LECs impairs the opening of lung lymphatic vessels at birth, leading to fluid retention in the lungs and neonatal death. We further demonstrated that increased mechanical pressure induces the expression of c-JUN in LECs. c-JUN regulates the opening of lymphatic vessels by modulating the remodeling of the actin cytoskeleton in LECs. Our study established the essential regulatory function of c-JUN-mediated transcriptional responses in facilitating lung lymphatic fluid clearance at birth.


Asunto(s)
Células Endoteliales , Vasos Linfáticos , Humanos , Recién Nacido , Células Endoteliales/metabolismo , Pulmón/metabolismo , Vasos Linfáticos/metabolismo
4.
Cell Rep ; 41(10): 111774, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36476853

RESUMEN

Mitochondrial damage causes mitochondrial DNA (mtDNA) release to activate the type I interferon (IFN-I) response via the cGAS-STING pathway. mtDNA-induced inflammation promotes autoimmune- and aging-related degenerative disorders. However, the global picture of inflammation-inducing mitochondrial damages remains obscure. Here, we have performed a mitochondria-targeted CRISPR knockout screen for regulators of the IFN-I response. Strikingly, our screen reveals dozens of hits enriched with key regulators of cristae architecture, including phospholipid cardiolipin and protein complexes such as OPA1, mitochondrial contact site and cristae organization (MICOS), sorting and assembly machinery (SAM), mitochondrial intermembrane space bridging (MIB), prohibitin (PHB), and the F1Fo-ATP synthase. Disrupting these cristae organizers consistently induces mtDNA release and the STING-dependent IFN-I response. Furthermore, knocking out MTX2, a subunit of the SAM complex whose null mutations cause progeria in humans, induces a robust STING-dependent IFN-I response in mouse liver. Taken together, beyond revealing the central role of cristae architecture to prevent mtDNA release and inflammation, our results mechanistically link mitochondrial cristae disorganization and inflammation, two emerging hallmarks of aging and aging-related degenerative diseases.


Asunto(s)
ADN Mitocondrial , Humanos , Animales , Ratones , ADN Mitocondrial/genética
5.
Nat Commun ; 13(1): 6525, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316343

RESUMEN

Enteroendocrine cells (EEs) represent a heterogeneous cell population in intestine and exert endocrine functions by secreting a diverse array of neuropeptides. Although many transcription factors (TFs) required for specification of EEs have been identified in both mammals and Drosophila, it is not understood how these TFs work together to generate this considerable subtype diversity. Here we show that EE diversity in adult Drosophila is generated via an "additive hierarchical TF cascade". Specifically, a combination of a master TF, a secondary-level TF and a tertiary-level TF constitute a "TF code" for generating EE diversity. We also discover a high degree of post-specification plasticity of EEs, as changes in the code-including as few as one distinct TF-allow efficient switching of subtype identities. Our study thus reveals a hierarchically-organized TF code that underlies EE diversity and plasticity in Drosophila, which can guide investigations of EEs in mammals and inform their application in medicine.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Enteroendocrinas/metabolismo , Regulación de la Expresión Génica , Mamíferos/metabolismo
6.
Cell Rep ; 39(7): 110816, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584682

RESUMEN

The Qinghai-Tibet Plateau (QTP) harbors hundreds of species well adapted to its extreme conditions, including its low-oxygen (hypoxic) atmosphere. Here, we show that the plateau pika-a keystone mammal of the QTP-lacks robust circadian rhythms. The major form of the plateau pika Epas1 protein includes a 24-residue insert caused by a point mutation at the 5' juncture site of Intron14 and is more stable than other mammalian orthologs. Biochemical studies reveal that an Epas1-Bmal1 complex with lower trans-activation activity occupies the E1/E2 motifs at the promoter of the core-clock gene Per2, thus explaining how an Epas1 mutation-selected in the hypoxic conditions of the QTP-disrupts the molecular clockwork. Importantly, experiments with hypoxic chambers show that mice expressing the plateau pika Epas1 ortholog in their suprachiasmatic nucleus have dysregulated central clocks, and pika Epas1 knockin mice reared in hypoxic conditions exhibit dramatically reduced heart damage compared with wild-type animals.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Relojes Circadianos , Lagomorpha , Aclimatación , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Hipoxia/genética , Hipoxia/metabolismo , Lagomorpha/genética , Lagomorpha/metabolismo , Ratones , Mutación/genética
7.
Nature ; 601(7891): 118-124, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34912121

RESUMEN

The skin serves as a physical barrier and an immunological interface that protects the body from the external environment1-3. Aberrant activation of immune cells can induce common skin autoimmune diseases such as vitiligo, which are often characterized by bilateral symmetric lesions in certain anatomic regions of the body4-6. Understanding what orchestrates the activities of cutaneous immune cells at an organ level is necessary for the treatment of autoimmune diseases. Here we identify subsets of dermal fibroblasts that are responsible for driving patterned autoimmune activity, by using a robust mouse model of vitiligo that is based on the activation of endogenous auto-reactive CD8+ T cells that target epidermal melanocytes. Using a combination of single-cell analysis of skin samples from patients with vitiligo, cell-type-specific genetic knockouts and engraftment experiments, we find that among multiple interferon-γ (IFNγ)-responsive cell types in vitiligo-affected skin, dermal fibroblasts are uniquely required to recruit and activate CD8+ cytotoxic T cells through secreted chemokines. Anatomically distinct human dermal fibroblasts exhibit intrinsic differences in the expression of chemokines in response to IFNγ. In mouse models of vitiligo, regional IFNγ-resistant fibroblasts determine the autoimmune pattern of depigmentation in the skin. Our study identifies anatomically distinct fibroblasts with permissive or repressive IFNγ responses as the key determinant of body-level patterns of lesions in vitiligo, and highlights mesenchymal subpopulations as therapeutic targets for treating autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Fibroblastos/inmunología , Piel/inmunología , Piel/patología , Vitíligo/inmunología , Vitíligo/patología , Adolescente , Adulto , Animales , Linfocitos T CD8-positivos/inmunología , Quimiocina CXCL10/inmunología , Quimiocina CXCL9/inmunología , Niño , Modelos Animales de Enfermedad , Femenino , Fibroblastos/patología , Humanos , Interferón gamma/inmunología , Masculino , Melanocitos/inmunología , Melanocitos/patología , Ratones , Persona de Mediana Edad , Comunicación Paracrina , RNA-Seq , Análisis de la Célula Individual , Células del Estroma/inmunología , Linfocitos T Citotóxicos/inmunología , Adulto Joven
9.
Curr Biol ; 31(4): 840-852.e5, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33340458

RESUMEN

In the germarium of the Drosophila ovary, developing germline cysts are surrounded by a population of somatic escort cells that are known to function as the niche cells for germline differentiation;1 however, the underlying molecular mechanisms of this niche function remain poorly understood. Through single-cell gene expression profiling combined with genetic analyses, we here demonstrate that the escort cells can be spatially and functionally divided into two successive domains. The anterior escort cells (aECs) specifically produce ecdysone, which acts on the cystoblast to promote synchronous cell division, whereas the posterior escort cells (pECs) respond to ecdysone signaling and regulate soma-germline cell adhesion to promote the transition from 16-cell cyst-to-egg chamber formation. The patterning of the aEC and pEC domains is independent of the germline but is dependent on JAK/STAT signaling activity, which emanates from the posterior. Thus, a heterogeneous population of escort cells constitutes a stepwise niche environment to orchestrate cystoblast division and differentiation toward egg chamber formation.


Asunto(s)
Quistes , Proteínas de Drosophila , Ecdisona , Animales , Diferenciación Celular , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ecdisona/metabolismo , Femenino , Células Germinativas , Ovario , Células Madre
11.
Plant J ; 103(4): 1503-1515, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32412137

RESUMEN

Small interfering RNAs (siRNAs) are responsible for establishing and maintaining DNA methylation through the RNA-directed DNA methylation (RdDM) pathway in plants. Although siRNA biogenesis is well known, it is relatively unclear about how the process is regulated. By a forward genetic screen in Arabidopsis thaliana, we identified a mutant defective in NOT1 and demonstrated that NOT1 is required for transcriptional silencing at RdDM target genomic loci. We demonstrated that NOT1 is required for Pol IV-dependent siRNA accumulation and DNA methylation at a subset of RdDM target genomic loci. Furthermore, we revealed that NOT1 is a constituent of a multi-subunit CCR4-NOT deadenylase complex by immunoprecipitation combined with mass spectrometry and demonstrated that the CCR4-NOT components can function as a whole to mediate chromatin silencing. Therefore, our work establishes that the CCR4-NOT complex regulates the biogenesis of Pol IV-dependent siRNAs, and hence facilitates DNA methylation and transcriptional silencing in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Metilación de ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , ARN Polimerasas Dirigidas por ADN/fisiología , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Factores de Transcripción/fisiología
12.
Cell Rep ; 31(8): 107683, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32460025

RESUMEN

Balanced stem cell self-renewal and differentiation is essential for maintaining tissue homeostasis, but the underlying mechanisms are poorly understood. Here, we identified the transcription factor SRY-related HMG-box (Sox) 100B, which is orthologous to mammalian Sox8/9/10, as a common target and central mediator of the EGFR/Ras and JAK/STAT signaling pathways that coordinates intestinal stem cell (ISC) proliferation and differentiation during both normal epithelial homeostasis and stress-induced intestinal repair in Drosophila. The two stress-responsive pathways directly regulate Sox100B transcription via two separate enhancers. Interestingly, an appropriate level of Sox100B is critical for its function, as its depletion inhibits ISC proliferation via cell cycle arrest, while its overexpression also inhibits ISC proliferation by directly suppressing EGFR expression and additionally promotes ISC differentiation by activating a differentiation-promoting regulatory circuitry composed of Sox100B, Sox21a, and Pdm1. Thus, our study reveals a Sox family transcription factor that functions as a stress-responsive signaling nexus that ultimately controls tissue homeostasis and regeneration.


Asunto(s)
Proteínas de Drosophila/metabolismo , Intestinos/fisiopatología , Factor de Transcripción SOX9/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Drosophila , Homeostasis , Regeneración
13.
Nature ; 579(7799): 421-426, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32188939

RESUMEN

Bioorthogonal chemistry capable of operating in live animals is needed to investigate biological processes such as cell death and immunity. Recent studies have identified a gasdermin family of pore-forming proteins that executes inflammasome-dependent and -independent pyroptosis1-5. Pyroptosis is proinflammatory, but its effect on antitumour immunity is unknown. Here we establish a bioorthogonal chemical system, in which a cancer-imaging probe phenylalanine trifluoroborate (Phe-BF3) that can enter cells desilylates and 'cleaves' a designed linker that contains a silyl ether. This system enabled the controlled release of a drug from an antibody-drug conjugate in mice. When combined with nanoparticle-mediated delivery, desilylation catalysed by Phe-BF3 could release a client protein-including an active gasdermin-from a nanoparticle conjugate, selectively into tumour cells in mice. We applied this bioorthogonal system to gasdermin, which revealed that pyroptosis of less than 15% of tumour cells was sufficient to clear the entire 4T1 mammary tumour graft. The tumour regression was absent in immune-deficient mice or upon T cell depletion, and was correlated with augmented antitumour immune responses. The injection of a reduced, ineffective dose of nanoparticle-conjugated gasdermin along with Phe-BF3 sensitized 4T1 tumours to anti-PD1 therapy. Our bioorthogonal system based on Phe-BF3 desilylation is therefore a powerful tool for chemical biology; our application of this system suggests that pyroptosis-induced inflammation triggers robust antitumour immunity and can synergize with checkpoint blockade.


Asunto(s)
Preparaciones de Acción Retardada/administración & dosificación , Neoplasias Mamarias Experimentales/inmunología , Piroptosis/inmunología , Animales , Cumarinas/administración & dosificación , Cumarinas/química , Cumarinas/metabolismo , Cumarinas/farmacocinética , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/metabolismo , Preparaciones de Acción Retardada/farmacocinética , Femenino , Proteínas Fluorescentes Verdes/administración & dosificación , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/farmacocinética , Células HeLa , Humanos , Inmunoconjugados/administración & dosificación , Inmunoconjugados/química , Inmunoconjugados/metabolismo , Inmunoconjugados/farmacocinética , Inflamasomas/inmunología , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Oligopéptidos/administración & dosificación , Oligopéptidos/química , Oligopéptidos/metabolismo , Oligopéptidos/farmacocinética , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Proteínas/administración & dosificación , Proteínas/química , Proteínas/metabolismo , Proteínas/farmacocinética , Silanos/administración & dosificación , Silanos/química , Silanos/metabolismo , Silanos/farmacocinética , Linfocitos T/inmunología , Trastuzumab/administración & dosificación , Trastuzumab/química , Trastuzumab/metabolismo , Trastuzumab/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Cell Rep ; 30(6): 1724-1734.e4, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32049006

RESUMEN

Intestinal stem cells (ISCs) are able to generate gut-specific enterocytes, as well as neural-like enteroendocrine cells. It is unclear how the tissue identity of the ISC lineage is regulated to confer cell-lineage fidelity. Here, we show that, in adult Drosophila midgut, loss of the transcriptional repressor Tramtrack in ISCs causes a self-renewal program switch to neural stem cell (NSC)-like, and that switch drives neuroendocrine tumor development. In Tramtrack-depleted ISCs, the ectopically expressed Deadpan acts as a major self-renewal factor for cell propagation, and Sequoia acts as a differentiation factor for the neuroendocrine phenotype. In addition, the expression of Sequoia renders NSC-specific self-renewal genes responsive to Notch in ISCs, thus inverting the differentiation-promoting function of Notch into a self-renewal role as in normal NSCs. These results suggest an active maintenance mechanism for the gut identity of ISCs, whose disruption may lead to an improper acquisition of NSC-like traits and tumorigenesis.

15.
Elife ; 92020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31898934

RESUMEN

Metabolites are major biological parameters sensed by many cell types in vivo, whether they function as signaling mediators of SC and niche cross talk to regulate tissue regeneration is largely unknown. We show here that deletion of the Notch pathway co-factor RBP-J specifically in mouse HFSCs triggers adjacent McSCs to precociously differentiate in their shared niche. Transcriptome screen and in vivo functional studies revealed that the elevated level of retinoic acid (RA) caused by de-repression of RA metabolic process genes as a result of RBP-J deletion in HFSCs triggers ectopic McSCs differentiation in the niche. Mechanistically the increased level of RA sensitizes McSCs to differentiation signal KIT-ligand by increasing its c-Kit receptor protein level in vivo. Using genetic approach, we further pinpointed HFSCs as the source of KIT-ligand in the niche. We discover that HFSCs regulate the metabolite RA level in vivo to allow self-renewal of neighboring McSCs.


Asunto(s)
Folículo Piloso/fisiología , Melanocitos/metabolismo , Retinoides/metabolismo , Nicho de Células Madre , Células Madre/fisiología , Animales , Diferenciación Celular , Ratones , Ratones Transgénicos
16.
Cell ; 180(1): 107-121.e17, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31866069

RESUMEN

Fibrosis can develop in most organs and causes organ failure. The most common type of lung fibrosis is known as idiopathic pulmonary fibrosis, in which fibrosis starts at the lung periphery and then progresses toward the lung center, eventually causing respiratory failure. Little is known about the mechanisms underlying the pathogenesis and periphery-to-center progression of the disease. Here we discovered that loss of Cdc42 function in alveolar stem cells (AT2 cells) causes periphery-to-center progressive lung fibrosis. We further show that Cdc42-null AT2 cells in both post-pneumonectomy and untreated aged mice cannot regenerate new alveoli, resulting in sustained exposure of AT2 cells to elevated mechanical tension. We demonstrate that elevated mechanical tension activates a TGF-ß signaling loop in AT2 cells, which drives the periphery-to-center progression of lung fibrosis. Our study establishes a direct mechanistic link between impaired alveolar regeneration, mechanical tension, and progressive lung fibrosis.


Asunto(s)
Células Madre Adultas/metabolismo , Fibrosis Pulmonar Idiopática/etiología , Alveolos Pulmonares/metabolismo , Células Madre Adultas/patología , Anciano , Células Epiteliales Alveolares/patología , Animales , Fenómenos Biomecánicos/fisiología , Femenino , Fibrosis/patología , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Pulmón/patología , Masculino , Ratones , Persona de Mediana Edad , Alveolos Pulmonares/patología , Regeneración , Transducción de Señal , Células Madre/patología , Estrés Mecánico , Estrés Fisiológico/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
17.
Cell Rep ; 29(12): 4172-4185.e5, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31851941

RESUMEN

Enteroendocrine cells (EEs) in the intestinal epithelium have important endocrine functions, yet this cell lineage exhibits great local and regional variations that have hampered detailed characterization of EE subtypes. Through single-cell RNA-sequencing analysis, combined with a collection of peptide hormone and receptor knockin strains, here we provide a comprehensive analysis of cellular diversity, spatial distribution, and transcription factor (TF) code of EEs in adult Drosophila midgut. We identify 10 major EE subtypes that totally produced approximately 14 different classes of hormone peptides. Each EE on average co-produces approximately 2-5 different classes of hormone peptides. Functional screen with subtype-enriched TFs suggests a combinatorial TF code that controls EE cell diversity; class-specific TFs Mirr and Ptx1 respectively define two major classes of EEs, and regional TFs such as Esg, Drm, Exex, and Fer1 further define regional EE identity. Our single-cell data should greatly facilitate Drosophila modeling of EE differentiation and function.


Asunto(s)
Proteínas de Drosophila/metabolismo , Mucosa Intestinal/citología , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Drosophila , Proteínas de Drosophila/genética , Células Enteroendocrinas , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética
18.
Sci Transl Med ; 11(488)2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30996080

RESUMEN

Recent studies have established the involvement of the fat mass and obesity-associated gene (FTO) in metabolic disorders such as obesity and diabetes. However, the precise molecular mechanism by which FTO regulates metabolism remains unknown. Here, we used a structure-based virtual screening of U.S. Food and Drug Administration-approved drugs to identify entacapone as a potential FTO inhibitor. Using structural and biochemical studies, we showed that entacapone directly bound to FTO and inhibited FTO activity in vitro. Furthermore, entacapone administration reduced body weight and lowered fasting blood glucose concentrations in diet-induced obese mice. We identified the transcription factor forkhead box protein O1 (FOXO1) mRNA as a direct substrate of FTO, and demonstrated that entacapone elicited its effects on gluconeogenesis in the liver and thermogenesis in adipose tissues in mice by acting on an FTO-FOXO1 regulatory axis.


Asunto(s)
Catecol O-Metiltransferasa/metabolismo , Catecoles/farmacología , Proteína Forkhead Box O1/metabolismo , Nitrilos/farmacología , ARN Mensajero/metabolismo , Animales , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Catecol O-Metiltransferasa/genética , Inhibidores Enzimáticos/farmacología , Proteína Forkhead Box O1/genética , Humanos , Ratones , ARN Mensajero/genética , Termogénesis/efectos de los fármacos , Termogénesis/genética , Termogénesis/fisiología
19.
Stem Cell Reports ; 12(5): 1007-1023, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-30982741

RESUMEN

Intestinal stem cell (ISC) differentiation in the Drosophila midgut requires Delta/Notch-mediated lateral inhibition, which separates the fate of ISCs from differentiating enteroblasts (EBs). Although a canonical Notch signaling cascade is involved in the lateral inhibition, its regulation at the transcriptional level is still unclear. Here we show that the establishment of lateral inhibition between ISC-EB requires two evolutionarily conserved transcriptional co-repressors Groucho (Gro) and C-terminal binding protein (CtBP) that act differently. Gro functions in EBs with E(spl)-C proteins to suppress Delta expression, inhibit cell-cycle re-entry, and promote cell differentiation, whereas CtBP functions specifically in ISCs to mediate transcriptional repression of Su(H) targets and maintain ISC fate. Interestingly, several E(spl)-C genes are also expressed in ISCs that cooperate with Gro to inhibit cell proliferation. Collectively, our study demonstrates separable and cell-type-specific functions of Gro and CtBP in a lateral inhibition process that controls the proliferation and differentiation of tissue stem cells.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Drosophila melanogaster/genética , Receptores Notch/genética , Proteínas Represoras/genética , Células Madre/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , División Celular/genética , Proliferación Celular/genética , Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Intestinos/citología , Interferencia de ARN , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal/genética , Células Madre/citología
20.
Elife ; 82019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30648969

RESUMEN

Heterochromatin Protein 1 (HP1) is a conserved chromosomal protein in eukaryotic cells that has a major role in directing heterochromatin formation, a process that requires co-transcriptional gene silencing mediated by small RNAs and their associated argonaute proteins. Heterochromatin formation requires erasing the active epigenetic mark, such as H3K4me2, but the molecular link between HP1 and H3K4 demethylation remains unclear. In a fertility screen in female Drosophila, we identified ovaries absent (ova), which functions in the stem cell niche, downstream of Piwi, to support germline stem cell differentiation. Moreover, ova acts as a suppressor of position effect variegation, and is required for silencing telomeric transposons in the germline. Biochemically, Ova acts to link the H3K4 demethylase dLsd1 to HP1a for local histone modifications. Therefore, our study provides a molecular connection between HP1a and local H3K4 demethylation during HP1a-mediated gene silencing that is required for ovary development, transposon silencing, and heterochromatin formation. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Silenciador del Gen , Heterocromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Factores Generales de Transcripción/metabolismo , Animales , Homólogo de la Proteína Chromobox 5 , Desmetilación , Femenino , Células Germinativas/citología , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Unión Proteica , Células Madre/citología , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA