Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 299
Filtrar
1.
N Engl J Med ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39282902

RESUMEN

BACKGROUND: Muscle-invasive urothelial carcinoma is an aggressive disease with high rates of relapse. Whether pembrolizumab as adjuvant therapy would be effective in patients with high-risk muscle-invasive urothelial carcinoma after radical surgery is unknown. METHODS: In this phase 3 trial, we randomly assigned patients, in a 1:1 ratio, to receive pembrolizumab at a dose of 200 mg every 3 weeks for 1 year or to undergo observation. Randomization was stratified according to pathological stage, centrally tested programmed death ligand 1 (PD-L1) status, and previous neoadjuvant chemotherapy. The coprimary end points were disease-free survival and overall survival in the intention-to-treat population. We considered the trial to be successful if either disease-free survival or overall survival was significantly longer with pembrolizumab than with observation. RESULTS: A total of 702 patients underwent randomization; 354 were assigned to receive pembrolizumab, and 348 were assigned to observation. As of July 5, 2024, the median duration of follow-up for disease-free survival was 44.8 months. The median disease-free survival was 29.6 months (95% confidence interval [CI], 20.0 to 40.7) with pembrolizumab and 14.2 months (95% CI, 11.0 to 20.2) with observation (hazard ratio for disease progression or death, 0.73; 95% CI, 0.59 to 0.90; two-sided P = 0.003). Grade 3 or higher adverse events (regardless of attribution) occurred in 50.7% of the patients in the pembrolizumab group and in 31.6% of the patients in the observation group. CONCLUSIONS: Among patients with high-risk muscle-invasive urothelial carcinoma after radical surgery, disease-free survival was significantly longer with adjuvant pembrolizumab than with observation. (Funded by the National Cancer Institute of the National Institutes of Health and others; Alliance A031501 AMBASSADOR ClinicalTrials.gov number, NCT03244384.).

2.
Precis Clin Med ; 7(3): pbae017, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39171210

RESUMEN

The delivery of lipid nanoparticle (LNP)-based mRNA therapeutics has captured the attention of the vaccine research community as an innovative and versatile tool for treating a variety of human malignancies. mRNA vaccines are now in the limelight as an alternative to conventional vaccines owing to their high precision, low-cost, rapid manufacture, and superior safety profile. Multiple mRNA vaccine platforms have been developed to target several types of cancer, and many have demonstrated encouraging results in animal models and human trials. The effectiveness of these new mRNA vaccines depends on the efficacy and stability of the antigen(s) of interest generated and the reliability of their delivery to antigen-presenting cells (APCs), especially dendritic cells (DCs). In this review, we provide a detailed overview of mRNA vaccines and their delivery strategies and consider future directions and challenges in advancing and expanding this promising vaccine platform to widespread therapeutic use against cancer.

3.
Chem Biomed Imaging ; 2(8): 560-568, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39211789

RESUMEN

Accurate assessment and characterization of the progression and therapy response of prostate cancer are essential for precision healthcare of patients diagnosed with the disease. MRI is a clinical imaging modality routinely used for diagnostic imaging and treatment planning of prostate cancer. Extradomain B fibronectin (EDB-FN) is an oncofetal subtype of fibronectin highly expressed in the extracellular matrix of aggressive cancers, including prostate cancer. It is a promising molecular target for the detection and risk-stratification of prostate cancer with high-resolution MR molecular imaging (MRMI). In this study, we investigated the effectiveness of MRMI with an EDB-FN specific contrast agent MT218 for assessing the progression and therapy resistance of prostate cancer. Low grade LNCaP prostate cancer cells became an invasive phenotype LNCaP-CXCR2 with elevated EDB-FN expression after acquisition of the C-X-C motif chemokine receptor 2 (CXCR2). MT218-MRMI showed brighter signal enhancement in LNCaP-CXCR2 tumor xenografts with a ∼2-fold contrast-to-noise (CNR) increase than in LNCaP tumors in mice. Enzalutamide-resistant C4-2-DR prostate cancer cells were more invasive, with higher EDB-FN expression than parental C4-2 cells. Brighter signal enhancement with a ∼2-fold CNR increase was observed in the C4-2-DR xenografts compared to that of C4-2 tumors in mice with MT218-MRMI. Interestingly, when invasive PC3 prostate cancer cells developed resistance to paclitaxel, the drug-resistant PC3-DR cells became less invasive with reduced EDB-FN expression than the parental PC3 cells. MT218-MRMI detected reduced brightness in the PC3-DR xenografts with more than 2-fold reduction of CNR compared to PC3 tumors in mice. The signal enhancement in all tumors was supported by the immunohistochemical staining of EDB-FN with the G4 monoclonal antibody. The results indicate that MRMI of EDB-FN with MT218 has promise for detection, risk stratification, and monitoring the progression and therapy response of invasive prostate cancer.

4.
Cancer Lett ; 598: 217090, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945201

RESUMEN

The tumor microenvironment (TME) of prostate cancer (PCa) is characterized by high levels of immunosuppressive molecules, including cytokines and chemokines. This creates a hostile immune landscape that impedes effective immune responses. The interleukin-1 (IL-1) receptor antagonist (IL1RN), a key anti-inflammatory molecule, plays a significant role in suppressing IL-1-related immune and inflammatory responses. Our research investigates the oncogenic role of IL1RN in PCa, particularly its interactions with muscarinic acetylcholine receptor 4 (CHRM4), and its involvement in driving immunosuppressive pathways and M2-like macrophage polarization within the PCa TME. We demonstrate that following androgen deprivation therapy (ADT), the IL1RN-CHRM4 interaction in PCa activates the MAPK/AKT signaling pathway. This activation upregulates the transcription factors E2F1 and MYCN, stimulating IL1RN production and creating a positive feedback loop that increases CHRM4 abundance in both PCa cells and M2-like macrophages. This ADT-driven IL1RN/CHRM4 axis significantly enhances immune checkpoint markers associated with neuroendocrine differentiation and treatment-resistant outcomes. Higher serum IL1RN levels are associated with increased disease aggressiveness and M2-like macrophage markers in advanced PCa patients. Additionally, elevated IL1RN levels correlate with better clinical outcomes following immunotherapy. Clinical correlations between IL1RN and CHRM4 expression in advanced PCa patients and neuroendocrine PCa organoid models highlight their potential as therapeutic targets. Our data suggest that targeting the IL1RN/CHRM4 signaling could be a promising strategy for managing PCa progression and enhancing treatment responses.


Asunto(s)
Diferenciación Celular , Proteína Antagonista del Receptor de Interleucina 1 , Neoplasias de la Próstata , Microambiente Tumoral , Masculino , Humanos , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Animales , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Macrófagos/metabolismo , Macrófagos/inmunología , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética
5.
Sci Signal ; 17(840): eadc9142, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861615

RESUMEN

Neuroendocrine prostate cancer (PCa) (NEPC), an aggressive subtype that is associated with poor prognosis, may arise after androgen deprivation therapy (ADT). We investigated the molecular mechanisms by which ADT induces neuroendocrine differentiation in advanced PCa. We found that transmembrane protein 1 (MCTP1), which has putative Ca2+ sensing function and multiple Ca2+-binding C2 domains, was abundant in samples from patients with advanced PCa. MCTP1 was associated with the expression of the EMT-associated transcription factors ZBTB46, FOXA2, and HIF1A. The increased abundance of MCTP1 promoted PC3 prostate cancer cell migration and neuroendocrine differentiation and was associated with SNAI1-dependent EMT in C4-2 PCa cells after ADT. ZBTB46 interacted with FOXA2 and HIF1A and increased the abundance of MCTP1 in a hypoxia-dependent manner. MCTP1 stimulated Ca2+ signaling and AKT activation to promote EMT and neuroendocrine differentiation by increasing the SNAI1-dependent expression of EMT and neuroendocrine markers, effects that were blocked by knockdown of MCTP1. These data suggest an oncogenic role for MCTP1 in the maintenance of a rare and aggressive prostate cancer subtype through its response to Ca2+ and suggest its potential as a therapeutic target.


Asunto(s)
Diferenciación Celular , Transición Epitelial-Mesenquimal , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Andrógenos/metabolismo , Andrógenos/farmacología , Señalización del Calcio/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito/metabolismo , Factor Nuclear 3-beta del Hepatocito/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Células Neuroendocrinas/metabolismo , Células Neuroendocrinas/patología , Células PC-3 , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
6.
Cell Stem Cell ; 31(8): 1203-1221.e7, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38878775

RESUMEN

Understanding prostate response to castration and androgen receptor signaling inhibitors (ARSI) is critical to improving long-term prostate cancer (PCa) patient survival. Here, we use a multi-omics approach on 229,794 single cells to create a mouse single-cell reference atlas for interpreting mouse prostate biology and castration response. Our reference atlas refines single-cell annotations and provides a chromatin context, which, when coupled with mouse lineage tracing, demonstrates that castration-resistant luminal cells are distinct from the pre-existent urethra-proximal stem/progenitor cells. Molecular pathway analysis and therapeutic studies further implicate AP1 (JUN/FOS), WNT/ß-catenin, FOXQ1, NF-κB, and JAK/STAT pathways as major drivers of castration-resistant luminal populations with relevance to human PCa. Our datasets, which can be explored through an interactive portal (https://visportal.roswellpark.org/data/tang/), can aid in developing combination treatments with ARSI for advanced PCa patients.


Asunto(s)
Epigénesis Genética , Neoplasias de la Próstata Resistentes a la Castración , Análisis de la Célula Individual , Masculino , Animales , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Ratones , Humanos , Próstata/patología , Próstata/metabolismo
7.
bioRxiv ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38585861

RESUMEN

Prostate cancer (PCa) is the most prevalent cancer affecting American men. Castration-resistant prostate cancer (CRPC) can emerge during hormone therapy for PCa, manifesting with elevated serum prostate-specific antigen (PSA) levels, continued disease progression, and/or metastasis to the new sites, resulting in a poor prognosis. A subset of CRPC patients shows a neuroendocrine (NE) phenotype, signifying reduced or no reliance on androgen receptor (AR) signaling and a particularly unfavorable prognosis. In this study, we incorporated computational approaches based on both gene expression profiles and protein-protein interaction (PPI) networks. We identified 500 potential marker genes, which are significantly enriched in cell cycle and neuronal processes. The top 40 candidates, collectively named as CDHu40, demonstrated superior performance in distinguishing NE prostate cancer (NEPC) and non-NEPC samples based on gene expression profiles compared to other published marker sets. Notably, some novel marker genes in CDHu40, absent in the other marker sets, have been reported to be associated with NEPC in the literature, such as DDC, FOLH1, BEX1, MAST1, and CACNA1A. Importantly, elevated CDHu40 scores derived from our predictive model showed a robust correlation with unfavorable survival outcomes in patients, indicating the potential of the CDHu40 score as a promising indicator for predicting the survival prognosis of those patients with the NE phenotype. Motif enrichment analysis on the top candidates suggests that REST and E2F6 may serve as key regulators in the NEPC progression. Significance: our study integrates gene expression variances in multiple NEPC studies and protein-protein interaction network to pinpoint a specific set of NEPC maker genes namely CDHu40. These genes and scores based on their gene expression levels effectively distinguish NEPC samples and underscore the clinical prognostic significance and potential mechanism.

8.
Epigenetics ; 19(1): 2308920, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38525786

RESUMEN

Accurately identifying life-threatening prostate cancer (PCa) at time of diagnosis remains an unsolved problem. We evaluated whether DNA methylation status of selected candidate genes can predict the risk of metastasis beyond clinical risk factors in men with untreated PCa. A nested case-control study was conducted among men diagnosed with localized PCa at Kaiser Permanente California between 01/01/1997-12/31/2006 who did not receive curative treatments. Cases were those who developed metastasis within 10 years from diagnosis. Controls were selected using density sampling. Ninety-eight candidate genes were selected from functional categories of cell cycle control, metastasis/tumour suppressors, cell signalling, cell adhesion/motility/invasion, angiogenesis, and immune function, and 41 from pluripotency genes. Cancer DNA from diagnostic biopsy blocks were extracted and analysed. Associations of methylation status were assessed using CpG site level and principal components-based analysis in conditional logistic regressions. In 215 cases and 404 controls, 27 candidate genes were found to be statistically significant in at least one of the two analytical approaches. The agreement between the methods was 25.9% (7 candidate genes, including 2 pluripotency markers). The DNA methylation status of several candidate genes was significantly associated with risk of metastasis in untreated localized PCa patients. These findings may inform future risk prediction models for PCa metastasis beyond clinical characteristics.


Asunto(s)
Metilación de ADN , Neoplasias de la Próstata , Masculino , Humanos , Estudios de Casos y Controles , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Factores de Riesgo
10.
Commun Biol ; 7(1): 9, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172561

RESUMEN

There are limited therapeutic options for patients with advanced prostate cancer (PCa). We previously found that heat shock factor 1 (HSF1) expression is increased in PCa and is an actionable target. In this manuscript, we identify that HSF1 regulates the conversion of homocysteine to cystathionine in the transsulfuration pathway by altering levels of cystathionine-ß-synthase (CBS). We find that HSF1 directly binds the CBS gene and upregulates CBS mRNA levels. Targeting CBS decreases PCa growth and induces tumor cell death while benign prostate cells are largely unaffected. Combined inhibition of HSF1 and CBS results in more pronounced inhibition of PCa cell proliferation and reduction of transsulfuration pathway metabolites. Combination of HSF1 and CBS knockout decreases tumor size for a small cell PCa xenograft mouse model. Our study thus provides new insights into the molecular mechanism of HSF1 function and an effective therapeutic strategy against advanced PCa.


Asunto(s)
Cistationina , Neoplasias de la Próstata , Masculino , Humanos , Ratones , Animales , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Proliferación Celular , Neoplasias de la Próstata/genética , Respuesta al Choque Térmico
11.
Cell Rep Med ; 5(2): 101381, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244540

RESUMEN

Neuroendocrine carcinomas, such as neuroendocrine prostate cancer and small-cell lung cancer, commonly have a poor prognosis and limited therapeutic options. We report that ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is elevated in tissues and plasma from patients with neuroendocrine carcinomas. Loss of UCHL1 decreases tumor growth and inhibits metastasis of these malignancies. UCHL1 maintains neuroendocrine differentiation and promotes cancer progression by regulating nucleoporin, POM121, and p53. UCHL1 binds, deubiquitinates, and stabilizes POM121 to regulate POM121-associated nuclear transport of E2F1 and c-MYC. Treatment with the UCHL1 inhibitor LDN-57444 slows tumor growth and metastasis across neuroendocrine carcinomas. The combination of UCHL1 inhibitors with cisplatin, the standard of care used for neuroendocrine carcinomas, significantly delays tumor growth in pre-clinical settings. Our study reveals mechanisms of UCHL1 function in regulating the progression of neuroendocrine carcinomas and identifies UCHL1 as a therapeutic target and potential molecular indicator for diagnosing and monitoring treatment responses in these malignancies.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Masculino , Humanos , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Carcinoma Neuroendocrino/tratamiento farmacológico , Carcinoma Neuroendocrino/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Glicoproteínas de Membrana
12.
Prostate ; 84(4): 349-357, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38084059

RESUMEN

BACKGROUND: Prostate cancer (PCa) continues to be one of the leading causes of cancer deaths in men. While androgen deprivation therapy is initially effective, castration-resistant PCa (CRPC) often recurs and has limited treatment options. Our previous study identified glutamine metabolism to be critical for CRPC growth. The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) blocks both carbon and nitrogen pathways but has dose-limiting toxicity. The prodrug DRP-104 is expected to be preferentially converted to DON in tumor cells to inhibit glutamine utilization with minimal toxicity. However, CRPC cells' susceptibility to DRP-104 remains unclear. METHODS: Human PCa cell lines (LNCaP, LAPC4, C4-2/MDVR, PC-3, 22RV1, NCI-H660) were treated with DRP-104, and effects on proliferation and cell death were assessed. Unbiased metabolic profiling and isotope tracing evaluated the effects of DRP-104 on glutamine pathways. Efficacy of DRP-104 in vivo was evaluated in a mouse xenograft model of neuroendocrine PCa, NCI-H660. RESULTS: DRP-104 inhibited proliferation and induced apoptosis in CRPC cell lines. Metabolite profiling showed decreases in the tricarboxylic acid cycle and nucleotide synthesis metabolites. Glutamine isotope tracing confirmed the blockade of both carbon pathway and nitrogen pathways. DRP-104 treated CRPC cells were rescued by the addition of nucleosides. DRP-104 inhibited neuroendocrine PCa xenograft growth without detectable toxicity. CONCLUSIONS: The prodrug DRP-104 blocks glutamine carbon and nitrogen utilization, thereby inhibiting CRPC growth and inducing apoptosis. Targeting glutamine metabolism pathways with DRP-104 represents a promising therapeutic strategy for CRPC.


Asunto(s)
Profármacos , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Animales , Ratones , Neoplasias de la Próstata Resistentes a la Castración/patología , Glutamina , Antagonistas de Andrógenos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Recurrencia Local de Neoplasia , Inhibidores Enzimáticos/farmacología , Carbono/farmacología , Carbono/uso terapéutico , Isótopos/farmacología , Isótopos/uso terapéutico , Nitrógeno , Profármacos/farmacología , Receptores Androgénicos/metabolismo
13.
Cancers (Basel) ; 15(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38136427

RESUMEN

Recurrent prostate cancer after primary treatment with radiation therapy is a common problem. Patients with localized recurrence may benefit from salvage therapy, but careful patient selection is crucial because not all patients will benefit from local salvage therapy, and salvage therapy has increased morbidity compared to primary treatments for prostate cancer. This review aims to provide an overview of the evaluation of patients with recurrent disease after radiation therapy and how it is continuing to evolve with increasing data on outcomes, as well as improving technologies and techniques. Our enhanced understanding of treatment outcomes and risk stratification has influenced the identification of patients who may benefit from local salvage treatment. Advances in imaging and biopsy techniques have enhanced the accuracy of locating the recurrence, which affects treatment decisions. Additionally, the growing interest in image-targeted ablative therapies that have less morbidity and complications than whole-gland therapies for suitable patients influences the evaluation process for those considering focal salvage therapy. Although significant changes have been made in the diagnostic evaluation of patients with recurrent disease after radiation therapy, it remains unclear whether these changes will ultimately improve patient outcomes.

14.
Cancer Cell ; 41(12): 2066-2082.e9, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37995683

RESUMEN

Trans-differentiation from an adenocarcinoma to a small cell neuroendocrine state is associated with therapy resistance in multiple cancer types. To gain insight into the underlying molecular events of the trans-differentiation, we perform a multi-omics time course analysis of a pan-small cell neuroendocrine cancer model (termed PARCB), a forward genetic transformation using human prostate basal cells and identify a shared developmental, arc-like, and entropy-high trajectory among all transformation model replicates. Further mapping with single cell resolution reveals two distinct lineages defined by mutually exclusive expression of ASCL1 or ASCL2. Temporal regulation by groups of transcription factors across developmental stages reveals that cellular reprogramming precedes the induction of neuronal programs. TFAP4 and ASCL1/2 feedback are identified as potential regulators of ASCL1 and ASCL2 expression. Our study provides temporal transcriptional patterns and uncovers pan-tissue parallels between prostate and lung cancers, as well as connections to normal neuroendocrine cell states.


Asunto(s)
Carcinoma de Células Pequeñas , Neoplasias Pulmonares , Neoplasias de la Próstata , Carcinoma Pulmonar de Células Pequeñas , Masculino , Humanos , Neoplasias Pulmonares/genética , Carcinoma de Células Pequeñas/genética , Factores de Transcripción/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transdiferenciación Celular/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Carcinoma Pulmonar de Células Pequeñas/genética
15.
Br J Cancer ; 129(11): 1818-1828, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37798372

RESUMEN

BACKGROUND: Neuroendocrine phenotype is commonly associated with therapy resistance and poor prognoses in small-cell neuroendocrine cancers (SCNCs), such as neuroendocrine prostate cancer (NEPC) and small-cell lung cancer (SCLC). Expression levels of current neuroendocrine markers exhibit high case-by-case variability, so multiple markers are used in combination to identify SCNCs. Here, we report that ACAA2 is elevated in SCNCs and is a potential molecular indicator for SCNCs. METHODS: ACAA2 expressions in tumour xenografts, tissue microarrays (TMAs), and patient tissues from prostate and lung cancers were analysed via immunohistochemistry. ACAA2 mRNA levels in lung and prostate cancer (PC) patients were assessed in published datasets. RESULTS: ACAA2 protein and mRNA levels were elevated in SCNCs relative to non-SCNCs. Medium/high ACAA2 intensity was observed in 78% of NEPC PDXs samples (N = 27) relative to 33% of adeno-CRPC (N = 86), 2% of localised PC (N = 50), and 0% of benign prostate specimens (N = 101). ACAA2 was also elevated in lung cancer patient tissues with neuroendocrine phenotype. 83% of lung carcinoid tissues (N = 12) and 90% of SCLC tissues (N = 10) exhibited medium/high intensity relative to 40% of lung adenocarcinoma (N = 15). CONCLUSION: ACAA2 expression is elevated in aggressive SCNCs such as NEPC and SCLC, suggesting it is a potential molecular indicator for SCNCs.


Asunto(s)
Carcinoma Neuroendocrino , Carcinoma de Células Pequeñas , Neoplasias Pulmonares , Neoplasias de la Próstata , Carcinoma Pulmonar de Células Pequeñas , Humanos , Masculino , Carcinoma Neuroendocrino/patología , Carcinoma de Células Pequeñas/genética , Línea Celular Tumoral , Neoplasias Pulmonares/genética , Fenotipo , Neoplasias de la Próstata/patología , ARN Mensajero , Carcinoma Pulmonar de Células Pequeñas/genética
16.
PLoS One ; 18(9): e0291361, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37725629

RESUMEN

INTRODUCTION: The expression of androgen receptor (AR) is not commonly tested or studied in uterine cancers, unlike estrogen receptor (ER) and progesterone receptor (PR) which are positive in most endometrial carcinomas. In this series, we evaluated the expression of AR and its comparison to ER and PR in different types of endometrial cancers and have reviewed the literature. MATERIALS AND METHODS: The status of AR, ER, and PR expression were evaluated in 71 cases which were categorized into endometrial endometrioid cancer (EEC), non-endometrioid endometrial cancers (NEEC), and metastatic carcinomas of endometrium. Expression of the receptors were compared to each other as well as to mismatch repair proteins (MMR), p53, and body mass index (BMI) using Fisher's Exact test in the StatPlus software. RESULTS: In EECs, the positivity was 97% for all the three receptors. In NEEC, positivity rates were 68%, 48%, and 35% for AR, ER, and PR respectively. In Metastatic carcinomas, AR and ER positivity was seen in 100% while PR was positive in 75% of the cases. In all cancers, the rates were 17% (11/66) for MMR loss, 57% (30/53) for p53 aberrant expression, and 76% (54/71) for the patients with BMI of ≥ 25 (kg/m2). CONCLUSION: AR is expressed in a high percentage of endometrial cancers. Its significance is more evident in high-grade NEEC where ER and PR may not be expressed. These findings warrant further evaluation of AR expression and candidacy of this pathway as a potential therapeutic target in endometrial cancers.


Asunto(s)
Carcinoma Endometrioide , Neoplasias Endometriales , Femenino , Humanos , Receptores de Progesterona , Receptores Androgénicos/genética , Proteína p53 Supresora de Tumor/genética , Neoplasias Endometriales/tratamiento farmacológico , Estrógenos , Receptores de Estrógenos
17.
Cancer Med ; 12(18): 18837-18849, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37694549

RESUMEN

BACKGROUND: We used a genome-wide discovery approach to identify methylation markers associated with metastasis in men with localized prostate cancer (PCa), as better identification of those at high risk of metastasis can inform treatment decision-making. METHODS: We identified men with localized PCa at Kaiser Permanente California (January 1, 1997-December 31, 2006) who did not receive curative treatment and followed them for 10 years to determine metastasis status. Cases were chart review-confirmed metastasis, and controls were matched using density sampling. We extracted DNA from the cancerous areas in the archived diagnostic tissue blocks. We used Illumina's Infinium MethylationEPIC BeadChip for methylation interrogation. We used conditional logistic regression and Bonferroni's correction to identify methylation markers associated with metastasis. In a separate validation cohort (2007), we evaluated the added predictive utility of the methylation score beyond clinical risk score. RESULTS: Among 215 cases and 404 controls, 31 CpG sites were significantly associated with metastasis status. Adding the methylation score to the clinical risk score did not meaningfully improve the c-statistic (0.80-0.81) in the validation cohort, though the score itself was statistically significant (p < 0.01). In the validation cohort, both clinical risk score alone and methylation marker score alone are well calibrated for predicted 10-year metastasis risks. Adding the methylation score to the clinical risk score only marginally improved predictive risk calibration. CONCLUSION: Our findings do not support the use of these markers to improve clinical risk prediction. The methylation markers identified may inform novel hypothesis in the roles of these genetic regions in metastasis development.


Asunto(s)
Metilación de ADN , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/patología , Factores de Riesgo , Islas de CpG
18.
Cell Death Dis ; 14(5): 304, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142586

RESUMEN

Current treatment options for prostate cancer focus on targeting androgen receptor (AR) signaling. Inhibiting effects of AR may activate neuroendocrine differentiation and lineage plasticity pathways, thereby promoting the development of neuroendocrine prostate cancer (NEPC). Understanding the regulatory mechanisms of AR has important clinical implications for this most aggressive type of prostate cancer. Here, we demonstrated the tumor-suppressive role of the AR and found that activated AR could directly bind to the regulatory sequence of muscarinic acetylcholine receptor 4 (CHRM4) and downregulate its expression. CHRM4 was highly expressed in prostate cancer cells after androgen-deprivation therapy (ADT). CHRM4 overexpression may drive neuroendocrine differentiation of prostate cancer cells and is associated with immunosuppressive cytokine responses in the tumor microenvironment (TME) of prostate cancer. Mechanistically, CHRM4-driven AKT/MYCN signaling upregulated the interferon alpha 17 (IFNA17) cytokine in the prostate cancer TME after ADT. IFNA17 mediates a feedback mechanism in the TME by activating the CHRM4/AKT/MYCN signaling-driven immune checkpoint pathway and neuroendocrine differentiation of prostate cancer cells. We explored the therapeutic efficacy of targeting CHRM4 as a potential treatment for NEPC and evaluated IFNA17 secretion in the TME as a possible predictive prognostic biomarker for NEPC.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteínas Proto-Oncogénicas c-akt , Antagonistas de Andrógenos/uso terapéutico , Interferón-alfa/uso terapéutico , Microambiente Tumoral , Línea Celular Tumoral , Diferenciación Celular , Receptores Androgénicos/metabolismo , Receptor Muscarínico M4/uso terapéutico
20.
Signal Transduct Target Ther ; 8(1): 155, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069149

RESUMEN

Loss of function of the von Hippel-Lindau (VHL) tumor suppressor gene is a hallmark of clear cell renal cell carcinoma (ccRCC). The importance of heterogeneity in the loss of this tumor suppressor has been under reported. To study the impact of intratumoral VHL heterogeneity observed in human ccRCC, we engineered VHL gene deletion in four RCC models, including a new primary tumor cell line derived from an aggressive metastatic case. The VHL gene-deleted (VHL-KO) cells underwent epithelial-to-mesenchymal transition (EMT) and exhibited increased motility but diminished proliferation and tumorigenicity compared to the parental VHL-expressing (VHL+) cells. Renal tumors with either VHL+ or VHL-KO cells alone exhibit minimal metastatic potential. Combined tumors displayed rampant lung metastases, highlighting a novel cooperative metastatic mechanism. The poorly proliferative VHL-KO cells stimulated the proliferation, EMT, and motility of neighboring VHL+ cells. Periostin (POSTN), a soluble protein overexpressed and secreted by VHL non-expressing (VHL-) cells, promoted metastasis by enhancing the motility of VHL-WT cells and facilitating tumor cell vascular escape. Genetic deletion or antibody blockade of POSTN dramatically suppressed lung metastases in our preclinical models. This work supports a new strategy to halt the progression of ccRCC by disrupting the critical metastatic crosstalk between heterogeneous cell populations within a tumor.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Neoplasias Pulmonares , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Neoplasias Renales/genética , Neoplasias Renales/patología , Genes Supresores de Tumor , Neoplasias Pulmonares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA