Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Environ Manage ; 370: 122878, 2024 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-39405856

RESUMEN

Renewable portfolio standards (RPS) and tradable green certificate (TGC) systems are mandatory institutional change that promote the renewable energy development and improve the environment in China. Their implementation will cause collective action issues among market entities. Collective action of participating in TGC trading is crucial for transaction success and the effectiveness of system implementation. This paper takes the collective action of heterogeneous market entities participating in TGC trading as the starting point. This paper simulates the strategy selection and group behavior evolution of different market entities under multiple scenarios, and analyzes collective action's evolutionary path and equilibrium results under different group combination environments. It explores the success rate of TGC trading under different heterogeneous entities combinations through an evolutionary game model, revealing the reasons for low liquidity of China's TGC market. The results show that: (1) Heterogeneity is an important factor affecting the success of TGC collective action. (2) When TGC suppliers and demanders are egoists, collective actions appear in multiple equilibria. As egoists decrease, the probability of market entities participating in collective actions increases, and TGC transactions are more successful. (3) Altruists can shorten the time for collective action to achieve equilibrium and reduce the possibility of multiple equilibria. (4) TGC suppliers play a greater guiding role in the transaction. When TGC suppliers are altruists, the probability of TGC demanders participating in collective action tends to 1. Conversely, TGC transaction success rate is 50%.

2.
Int J Biol Macromol ; : 136580, 2024 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-39406326

RESUMEN

OBJECTIVE: This study aims to investigate the mechanism by which PAARH promotes M2 macrophage polarization and immune evasion of liver cancer cells through VEGF, in order to reveal its role in the progression of liver cancer. METHODS: The expressions of PAARH, VEGF, and HIF-1α in liver cancer cells were detected using qRT-PCR and Western blot. Flow cytometry was utilized to analyze the polarization status of macrophages and assess the impact on immune evasion-related markers. The relationship between PAARH and VEGF in macrophage polarization was further explored. Additionally, a tumor-bearing mouse model was established to observe tumor growth. RESULTS: The results show that PAARH is upregulated in liver cancer cells, and silencing PAARH significantly inhibits tumor malignancy progression. Under hypoxic conditions, overexpression of PAARH significantly increases VEGF expression, and PAARH regulates M2 macrophage polarization through VEGF. Overexpression of PAARH significantly promotes M2 macrophage polarization, increases levels of PD-L1 and Th2 immune response markers, and enhances cell proliferation, migration, and invasion; it also suppresses M1 macrophage polarization, decreases levels of PD-L2 and Th1 immune response markers, and inhibits cell apoptosis. Silencing VEGF reverses these effects. Silencing PAARH or overexpressing VEGF weakens the malignant phenotype of the cells and immune evasion. Results from the tumor-bearing mouse model indicate that silencing PAARH significantly reduces tumor size and weight, while overexpressing VEGF significantly increases tumor volume and weight. CONCLUSION: PAARH enhances the immune evasion capability of liver cancer cells by upregulating VEGF to promote M2 macrophage polarization, suggesting that PAARH may serve as a new therapeutic target for liver cancer.

3.
Int J Biol Macromol ; : 136538, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39396585

RESUMEN

To investigate the role of LINC00894 in oxaliplatin chemoresistance of hepatocellular carcinoma (HCC) and its mechanisms. The oxaliplatin-resistant HCC cell lines were established. IC50 of oxaliplatin was calculated by CCK-8 assay. Cell viability was detected using clonal formation experiment, while cell apoptosis was accessed by flow cytometry. RNA binding protein immunoprecipitation and RNA pull-down were performed to explore the interaction of LINC00894 and ANXA2. The expressions of RNA and protein were tested by qRT-PCR and western blot respectively. Tumor xenograft was performed to detect the effect of LINC00894 in vivo. The expression of ki67 was evaluated by immunohistochemistry staining. LINC00894 was overexpressed in HCC cells resistant to oxaliplatin. Elevated LINC00894 promoted HCC cells resistance to oxaliplatin, whereas silence of LINC00894 improved HCC sensitivity to oxaliplatin. LINC00894 could bind to the ANXA2 protein, enhanced the stability of the ANXA2 protein and reduced its ubiquitination. Furthermore, LINC00894 modulated HCC resistance to oxaliplatin both in vitro and in vivo by targeting the ANXA2 protein.LINC00894 enhanced the stability of ANXA2 protein and attenuated its ubiquitination by interacting with it, thereby promoting oxaliplatin resistance in HCC. Our findings contributed to understanding the role of these mechanisms in the process of oxaliplatin resistance in HCC.

4.
Int J Biol Macromol ; : 136459, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39396590

RESUMEN

Hepatocellular carcinoma (HCC) is characterized by a complex tumor microenvironment (TME), and long non-coding RNAs (lncRNAs) MEG3 emerged as regulators of macrophage polarization with a negative relationship with colony-stimulating factor 1 (CSF-1). Few studies are on the interplay among MEG3, CSF-1, T helper cells (Th), and the programmed cell death protein 1 and its ligands (PD-1/PD-Ls) in TME of HCC.MEG3 expression in THP-1 macrophages, monitored polarization, and PD-1/PD-Ls expression were through flow cytometry, WB, and RT-qPCR. In co-cultures, the interaction of MEG3, macrophage, and HCC was assayed by ELISA. The invasive and migratory of HCC were assessed through experiments such as CCK-8, clonogenic assay, wound healing, and Transwell. A xenograft mouse model of HCC was established, administered with MEG3 overexpression (OE) or knockdown (KD) constructs, and monitored tumor growth. In vitro, MEG3 OE induced a robust M1 macrophage phenotype, evidenced by elevated expression of M1 markers and a significant increase in Th1 cytokines, with a concomitant decrease in Th2 cytokines. This was paralleled by reduced CSF-1 and PD-1/PD-Ls expression. In contrast, MEG3 KD promoted an M2 phenotype with increased CSF-1 and PD-1/PD-Ls expression, and an upregulation of Th2 cytokines. MEG3 OE inhibited the growth, invasion, and migration of HCC, while the opposite was observed when MEG3 was downregulated. In vivo, MEG3 OE resulted in significantly reduced tumor growth, with decreased PD-1/PD-Ls expression on macrophages and enhanced Th1 response. Conversely, MEG3 KD promoted tumor growth with increased PD-1/PD-Ls and a Th2-skewed immune response. MEG3 modulates the TME by affecting TAMs through CSF-1, thereby influencing the balance of Th1/Th2 cells and altering the expression of PD-1/PD-L1s. This study demonstrates that targeting MEG3 is an effective therapeutic strategy for HCC.

5.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38801703

RESUMEN

Micro ribonucleic acids (miRNAs) play a pivotal role in governing the human transcriptome in various biological phenomena. Hence, the accumulation of miRNA expression dysregulation frequently assumes a noteworthy role in the initiation and progression of complex diseases. However, accurate identification of dysregulated miRNAs still faces challenges at the current stage. Several bioinformatics tools have recently emerged for forecasting the associations between miRNAs and diseases. Nonetheless, the existing reference tools mainly identify the miRNA-disease associations in a general state and fall short of pinpointing dysregulated miRNAs within a specific disease state. Additionally, no studies adequately consider miRNA-miRNA interactions (MMIs) when analyzing the miRNA-disease associations. Here, we introduced a systematic approach, called IDMIR, which enabled the identification of expression dysregulated miRNAs through an MMI network under the gene expression context, where the network's architecture was designed to implicitly connect miRNAs based on their shared biological functions within a particular disease context. The advantage of IDMIR is that it uses gene expression data for the identification of dysregulated miRNAs by analyzing variations in MMIs. We illustrated the excellent predictive power for dysregulated miRNAs of the IDMIR approach through data analysis on breast cancer and bladder urothelial cancer. IDMIR could surpass several existing miRNA-disease association prediction approaches through comparison. We believe the approach complements the deficiencies in predicting miRNA-disease association and may provide new insights and possibilities for diagnosing and treating diseases. The IDMIR approach is now available as a free R package on CRAN (https://CRAN.R-project.org/package=IDMIR).


Asunto(s)
Biología Computacional , Redes Reguladoras de Genes , MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Biología Computacional/métodos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Perfilación de la Expresión Génica , Femenino , Regulación Neoplásica de la Expresión Génica
6.
Opt Express ; 32(2): 2245-2256, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297759

RESUMEN

Fiber nonlinearity compensation (NLC) is likely to become an indispensable component of coherent optical transmission systems for extending the transmission reach and increasing capacity per fiber. In this work, we introduce what we believe to be a novel fast black-box neural network model based on the Fourier neural operator (FNO) to compensate for the chromatic dispersion (CD) and nonlinearity simultaneously. The feasibility of the proposed approach is demonstrated in uniformly distributed as well as probabilistically-shaped 32GBaud 16/32/64-ary quadrature amplitude modulation (16/32/64QAM) polarization-division-multiplexed (PDM) coherent optical communication systems. The experimental results demonstrate that about 0.31 dB Q-factor improvement is achieved compared to traditional digital back-propagation (DBP) with 5 steps per span for PDM-16QAM signals after 1600 km standard single-mode fiber (SSMF) transmission at the optimal launched power of 4 dBm. While, the time consumption is reduced from 6.04 seconds to 1.69 seconds using a central processing unit (CPU), and from 1.54 seconds to only 0.03 seconds using a graphic processing unit (GPU), respectively. This scheme also reveals noticeable generalization ability in terms of launched power and modulation format.

7.
Mol Ther Nucleic Acids ; 34: 102026, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37744173

RESUMEN

Immunotherapy has become one of the most promising therapy methods for cancer, but only a small number of patients are responsive to it, indicating that more effective biomarkers are urgently needed. This study developed a pathway analysis method, named PathwayTMB, to identify genomic mutation pathways that serve as potential biomarkers for predicting the clinical outcome of immunotherapy. PathwayTMB first calculates the patient-specific pathway-based tumor mutational burden (PTMB) to reflect the cumulative extent of mutations for each pathway. It then screens mutated survival benefit-related pathways to construct an immune-related prognostic signature based on PTMB (IPSP). In a melanoma training set, IPSP-high patients presented a longer overall survival and a higher response rate than IPSP-low patients. Moreover, the IPSP showed a superior predictive effect compared with TMB. In addition, the prognostic and predictive value of the IPSP was consistently validated in two independent validation sets. Finally, in a multi-cancer dataset, PathwayTMB also exhibited good performance. Our results indicate that PathwayTMB could identify the mutation pathways for predicting immunotherapeutic survival, and their combination may serve as a potential predictive biomarker for immune checkpoint inhibitor therapy.

8.
ESC Heart Fail ; 10(5): 3038-3045, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37562973

RESUMEN

AIMS: Cardiomyocyte apoptosis is an important factor leading to the occurrence and development of heart failure (HF), which is associated with high mortality of patients with cardiovascular diseases. This study aims to investigate the underlying mechanisms of HF in terms of expression and regulation patterns using bioinformatics and experimental validation. METHODS AND RESULTS: Two HF datasets were collected: a dataset GSE112056 downloaded from the GEO database (including mRNA and miRNA sequencing data) and another is the laboratory-owned mRNA dataset. Differential mRNAs and miRNAs in the two datasets were screened using the raw Bayesian approach method. Gene Ontology was used to perform functional enrichment analysis of the differential mRNAs and co-expression network analysis of the differential mRNAs, combined with nuclear transcription factors in the differential miRNAs and mRNAs for target gene prediction. A HF cell model was constructed using mouse cardiomyocytes (HL-1), and the role and mechanism of miRNA-103-3p-Hlf (hepatic leukaemia factor) in the process of HF was verified by cell transfection, luciferase reporter gene, WB, and qPCR. We found that Hlf gene expression was decreased in the HF model group and strongly correlated with FYCO1 (FYVE and coiled-coil domain-containing protein 1) gene, a phenomenon enriched in apoptotic autophagy-related pathways. MiR-103-3p expression was up-regulated in the HF model group, and its targeting correlation with Hlf was confirmed by luciferase activity assay. In the HL-1 cell model, miR-103-3p significantly promoted apoptosis and inhibited autophagy in HL-1 cells (all P < 0.05), and overexpression of the Hlf gene reversed this phenomenon, inhibiting apoptosis and promoting autophagy in HL-1 cells (all P < 0.05). CONCLUSIONS: MiR-103-3p affects myocardial cells apoptosis and autophagy by targeting Hlf, playing as a potential therapeutic biomarker for HF progression.


Asunto(s)
Insuficiencia Cardíaca , Leucemia , MicroARNs , Animales , Humanos , Ratones , Apoptosis/genética , Autofagia/genética , Teorema de Bayes , Insuficiencia Cardíaca/genética , Luciferasas , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero
9.
Artículo en Inglés | MEDLINE | ID: mdl-37165492

RESUMEN

PURPOSE: Homocysteine (Hcy)-induced endothelial cell injury is a key event in atherosclerosis pathogenesis. In this study, we aimed to explore the mechanisms underlying Hcy-induced endothelial injury by assessing the effects of Hcy on endothelial cell proliferation and the microRNA (miR)-129-5p/fibroblast growth factor 2 (FGF2) axis. METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with Hcy to construct an endothelial cell injury model. Expression levels of FGF2 in Hcy-induced HUVECs were determined using quantitative real-time polymerase chain reaction and western blotting. An FGF2 overexpression lentiviral vector was constructed to upregulate FGF2 expression in HUVECs via lentivirus transduction. A cell counting kit-8 assay was used to explore the effects of FGF2 overexpression on HUVEC proliferation. An upstream regulatory miRNA was predicted, and its target-binding relationship with FGF2 was evaluated using a dual-luciferase reporter assay. RESULTS: We found that FGF2 expression in HUVECs was inhibited by Hcy treatment. Lentivirus transduction led to the overexpression of FGF2 in HUVECs, which significantly reversed the effect of Hcy on endothelial cell proliferation. miR-129-5p was experimentally validated as an upstream regulator of FGF2, and its decreased levels in HUVECs led to increased FGF2 expression. In addition, HUVEC proliferation was enhanced by the knockdown of miR-129-5p, and this effect was reversed by Hcy treatment. CONCLUSION: Taken together, the results of this study revealed that Hcy inhibits FGF2 expression in HUVECs, and FGF2 is regulated by upstream miR-129-5p to improve the effect of Hcy on endothelial cell proliferation.

10.
Comput Biol Med ; 159: 106969, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37105108

RESUMEN

The Coronavirus Disease 2019 (COVID-19) pandemic is still wreaking havoc worldwide. Therefore, the urgent need for efficient treatments pushes researchers and clinicians into screening effective drugs. Drug repurposing may be a promising and time-saving strategy to identify potential drugs against this disease. Here, we developed a novel computational approach, named Drug Target Set Enrichment Analysis (DTSEA), to identify potent drugs against COVID-19. DTSEA first mapped the disease-related genes into a gene functional interaction network, and then it used a network propagation algorithm to rank all genes in the network by calculating the network proximity of genes to disease-related genes. Finally, an enrichment analysis was performed on drug target sets to prioritize disease-candidate drugs. It was shown that the top three drugs predicted by DTSEA, including Ataluren, Carfilzomib, and Aripiprazole, were significantly enriched in the immune response pathways indicating the potential for use as promising COVID-19 inhibitors. In addition to these drugs, DTSEA also identified several drugs (such as Remdesivir and Olumiant), which have obtained emergency use authorization (EUA) for COVID-19. These results indicated that DTSEA could effectively identify the candidate drugs for COVID-19, which will help to accelerate the development of drugs for COVID-19. We then performed several validations to ensure the reliability and validity of DTSEA, including topological analysis, robustness analysis, and prediction consistency. Collectively, DTSEA successfully predicted candidate drugs against COVID-19 with high accuracy and reliability, thus making it a formidable tool to identify potential drugs for a specific disease and facilitate further investigation.


Asunto(s)
COVID-19 , Humanos , Reposicionamiento de Medicamentos/métodos , SARS-CoV-2 , Reproducibilidad de los Resultados , Redes Reguladoras de Genes
11.
Clin Exp Hypertens ; 45(1): 2180019, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36860117

RESUMEN

OBJECTIVES: The present study aimed to investigate the effect and mechanism of angiotensin II-induced ferroptosis in vascular endothelial cells. METHODS: In vitro, HUVECs were treated with AngII, AT1/2 R antagonist, P53 inhibitor, or their combinations. MDA and intracellular iron content were evaluated using an ELISA assay. The expression of ALOX12, P53, P21, and SLC7A11 were determined by western blotting in HUVECs and then confirmed through RT-PCR. RESULTS: As the concentration of Ang II (0, 0.1,1,10,100, and 1000uM for 48 h) increased, the level of MDA and intracellular iron content increased in HUVECs. Compared with the single AngII group, ALOX12, p53, MDA, and intracellular iron content in AT1/2R antagonist group decreased significantly. In pifithrin-α hydrobromide-treated, ALOX12, P21,MDA, and intracellular iron content decreased significantly as compared to the single AngII group. Similarly, the effect of combined use of blockers is stronger than that of blockers alone. CONCLUSIONS: AngII can induce ferroptosis of vascular endothelial cells. The mechanism of AngII-induced ferroptosis may be regulated through the signal axis of p53-ALOX12.


Asunto(s)
Araquidonato 12-Lipooxigenasa , Ferroptosis , Células Endoteliales de la Vena Umbilical Humana , Proteína p53 Supresora de Tumor , Angiotensina II , Células Endoteliales , Hierro , Humanos
12.
Chem Commun (Camb) ; 59(13): 1813-1816, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36722877

RESUMEN

Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid.

13.
Clin Transl Oncol ; 25(6): 1793-1804, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36737533

RESUMEN

BACKGROUND: Long noncoding RNA (lncRNAs) GMDS-AS1 has been reported as a tumor regulator in tumor growth and metastasis, but its effect in hepatocellular carcinoma (HCC) remains unclear. ESET, a histone H3K9 methyl-transferase, is involved in epigenomic regulation of tumor progression in multiple cancers. However, the correlation between ESET and lncRNA in HCC is less reported. METHODS: Quantitative real-time PCR (qRT-PCR) was taken to determine the expression of ESET and GMDS-AS1. Western blot was taken to determine the target protein levels of ESET and GMDS-AS1. Online database and bioinformatics analysis were used to screen abnormally expressed genes. Luciferase assay was performed to confirm the binding of GMDS-AS1 and PSMB1. Ki67 and Edu were used for evaluated the proliferation of tumor cells. ChIP assay was performed to verify the relationship between H3K9me1 and lncRNA GMDS-AS1 promoter. Transwell was taken to determine the migration and invasion ability of tumor cells. CCK-8 was used for determining the viability of tumor cells. Flow cytometry was performed to detect the cell cycle of tumor cells. RESULTS: The expression of GMDS-AS1 was decreased and the expression of ESET was increased in HCC. GMDS-AS1 inhibition contributed to tumor development, and this effect was closely related to epigenetic inhibition of GMDS-AS1 by ESET. PSMB1, a downstream target of GMDS-AS1, promoted the tumor proliferation and was negatively regulated by GMDS-AS1. CONCLUSION: Our result demonstrates anti-tumorigenic traits of lncRNA GMDS-AS1 in HCC and explains its pattern of regulation mediated by ESET. Our work unmasked an essential role of GMDS-AS1 in HCC progression and detected a novel pathway for ESET to promote HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Hepáticas/patología , Supervivencia Celular , Metiltransferasas/genética , Epigenómica , Proliferación Celular/genética , MicroARNs/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Movimiento Celular/genética
14.
Environ Toxicol ; 38(4): 941-949, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36620907

RESUMEN

This study mainly focuses on revealing the role of PLAGL2 in lung cancer stemness. In vitro and in vivo experiments were performed to evaluate the effects of PLAGL2 on lung cancer cell stemness. Mechanistic analysis using luciferase reporter and ChIP assays were implemented to reveal the underlying mechanisms. The transcriptional factor E2F1 transcriptionally activated PLAGL2 expression via directly binding to PLAGL2 promoter in lung cancer cells. Moreover, PLAGL2 promoted the stemness of lung cancer cells dependent on E2F1-mediated transcriptional activation. This study provides a potential target for lung cancer progression.


Asunto(s)
Proteínas de Unión al ADN , Neoplasias Pulmonares , Humanos , Proteínas de Unión al ADN/metabolismo , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Línea Celular Tumoral , Regiones Promotoras Genéticas , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción/metabolismo , Proteínas de Unión al ARN/genética
15.
Chemistry ; 29(5): e202202858, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36331543

RESUMEN

Metal phosphides are promising noble metal-free electrocatalysts for hydrogen evolution reaction (HER), but they usually suffer from inferior stability and thus are far from the device applications. We reported a facile and controllable synthetic method to prepare metal-incorporated M-FeP nanoparticles (M=Cr, Mn, Co, Fe, Ni, Cu, and Mo) with the guide of the density functional theory (DFT). The evaluated HER activity sequence was consistent with the DFT predictions, and cobalt was revealed to be the appropriate dopant. With the optimization of the Co/Fe ratio, the Fe0.67 Co0.33 P/C only required overpotentials of 67 mV and 129 mV to obtain the cathodic current density of 10 and 100 mA cm-2, respectively. It maintained the initial activity in the 10 h stability test, surpassing the other Co-FeP/C catalysts. Ex situ experiments demonstrated that the decreased element leaching and the increased surface phosphide content contributed to the high stability of the Fe0.67 Co0.33 P/C. A proton exchange membrane water electrolyzer was assembled using the Fe0.67 Co0.33 P/C as the cathodic catalyst. It showed a current density of 0.8 A cm-2 at the applied voltage of 2.0 V and retained the initial activity in the 1000 cycles' stability test, suggesting the potential application of the catalysts.


Asunto(s)
Hidrógeno , Metales , Protones , Cobalto , Agua
16.
Kaohsiung J Med Sci ; 39(3): 254-265, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36524461

RESUMEN

Hyperglycemia is the most important factor leading to the complications of type 2 diabetes mellitus (T2DM). The primary condition for the treatment of T2DM is to change the glucose and lipid metabolism disorders in the liver and other insulin-sensitive tissues. The current study aims to unearth the potential molecular mechanism of inhibiting liver gluconeogenesis to provide a new theoretical basis for the treatment of T2DM. High glucose (HG) induction of HepG2 cells followed by treatment with sequence-similar family 3 member D (FAM3D). Dual specificity phosphatases 1 (DUSP1), zinc finger protein 36 (ZFP36), salt-induced kinase 1 (SIK1), p-SIK1, posphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) gene and protein expression level were detected by quantitative real-time polymerase chain reaction and western blot. The PEPCK and G6Pase activities were detected by enzyme linked immunosorbent assay. Glucose production assay to determine glucose content. The RNA binding protein immunoprecipitation assay was used to detect the binding of ZFP36 to SIK1. FAM3D facilitated the expression of DUSP1 but suppressed the expression of gluconeogenesis-related factors in an HG environment. The expression of ZFP36 was up-regulated in an HG environment. ZFP36 could reverse the inhibition of gluconeogenesis caused by FAM3D. HG-induced upregulation of ZFP36 was downregulated by overexpression of DUSP1. ZFP36 bound to SIK1, and downregulation of ZFP36 promoted SIK1 expression and inhibits gluconeogenesis. Our study demonstrated FAM3D inhibited gluconeogenesis through the DUSP1/ZFP36/SIK1 axis in an HG environment, which provided a new theoretical basis for exploring the pathogenesis and treatment strategy of T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Gluconeogénesis , Humanos , Gluconeogénesis/genética , Tristetraprolina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Hígado/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Citocinas/metabolismo
17.
Clin Med Insights Oncol ; 16: 11795549221116834, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36310733

RESUMEN

Background: Next-generation sequencing (NGS) has been widely used to identify targetable variants for patients with solid tumors, especially lung cancer. Circulating tumor DNA (ctDNA) has emerged as an alternative approach for tumor biopsy. However, the feasibility of ctDNA in detecting molecular variants remains debatable. Methods: Herein, we performed NGS on matched tissue and plasma samples from 146 Chinese patients with lung cancer. The concordance of variants between tissue and plasma samples was explored at patient and variant levels. Results: More than 80% of patients harbored at least one concordant variant in tissue and plasma samples. A total of 506 variants were shared between tissue and plasma samples, and 432 variants were identified in tissue only and 92 variants were identified in plasma only. The sensitivity and positive predictive value (PPV) of all variants detected in plasma were 53.9% and 84.6%, respectively. High concordance was observed in several driver genes. In details, epidermal growth factor receptor exon 19 deletion (EGFR 19del), EGFR p.S768I, anaplastic lymphoma kinase (ALK) fusion, rearranged during transfection (RET) fusion, and kirsten rat sarcoma viral oncogene homolog (KRAS) p.G12C achieved a sensitivity of 90%, 100%, 85.7%, 100%, and 85.7%, respectively. Four EGFR-altered lung adenocarcinoma patients who underwent ctDNA-based NGS at initial diagnosis benefited from first-line gefitinib/icotinib with a median progression-free survival of 379.5 days. Conclusions: Our work provided the clinical evidence of feasibility of ctDNA-based NGS in guiding decision-making in treatment. ctDNA-based NGA could be a reliable alternative approach for tissue biopsy in patients with lung cancer.

18.
Curr Neurovasc Res ; 19(1): 108-116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35297350

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) may participate in the process of vascular calcification. However, the role of microRNA-17-5p in vascular calcification has not been clarified. In this study, we showed the effects of microRNA-17-5p on vascular calcification. MATERIALS AND METHODS: Vascular smooth muscle cells (VSMCs) were transfected with miR-17-5p mimics, a miR-17-5p inhibitor or negative control (NC) using Lipofectamine 2000. Then the cells were induced by an osteogenic medium. Alkaline phosphatase (ALP) activity and mineralization were determined. Osteocalcin (OC), bone morphogenetic protein 2(BMP-2), Collagen Ia (Colla), Runx2, and ankylosis protein homolog (ANKH) gene expressions were determined by reverse transcription-polymerase chain reaction. Vascular calcification was developed using a renal failure model. RESULTS: The ALP activity was increased when miR-17-5p mimics were transfected, whereas the miR-17-5p inhibitor reduced ALP activity (p < 0.05). The number and average area of mineral nodes in the miR-17-5p mimic group was larger than those in the corresponding control and NC groups (p < 0.05). The number and average area of the mineral nodes in the miR-17-5p inhibitor group were smaller than those in the corresponding control and NC groups (p < 0.05). Bmp2, OC, Col1a and Runx2 were higher in the miR-17-5p mimics group compared to those in the control and NC groups. ANKH expression was decreased in VSMCs with the miR-17-5p mimics and increased in VSMCs with miR-17-5p inhibitor. ANKH siRNA intervention also promoted mineralization. The miR-17-5p expression was upregulated and ANKH was down-regulated in the aortic arteries with calcification. CONCLUSION: Our data showed that miR-17-5p may promote vascular calcification by inhibiting ANKH expression.


Asunto(s)
MicroARNs , Calcificación Vascular , Diferenciación Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Humanos , MicroARNs/metabolismo , Miocitos del Músculo Liso , Osteogénesis/genética , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Calcificación Vascular/metabolismo
19.
Front Cell Neurosci ; 16: 813084, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35197827

RESUMEN

OBJECTIVE: To investigate the clinical features, risk factors and underlying pathogenesis of cancer related subarachnoid hemorrhage (SAH). METHODS: Clinical data of SAH in patients with active cancer from January 2010 to December 2020 at four centers were retrospectively reviewed. Patients with active cancer without SAH were matched to SAH patients with active cancer group. Logistic regression was applied to investigate the independent risk factors of SAH in patients with active cancer, after a 1:1 propensity score matching (PSM). A receiver operator characteristic curve was configured to calculate the optimal cut-off value of the joint predictive factor for cancer related SAH. RESULTS: A total of 82 SAH patients with active cancer and 309 patients with active cancer alone were included. Most SAH patients with cancer had poor outcomes, with 30-day mortality of 41.5%, and with 90-day mortality of 52.0%. The PSM yielded 75 pairs of study participants. Logistic regression revealed that a decrease in platelet and prolonged prothrombin time were the independent risk factors of cancer related SAH. In addition, receiver operator characteristic curve of the joint predictive factor showed the largest AUC of 0.8131, with cut-off value equaling to 11.719, with a sensitivity of 65.3% and specificity of 89.3%. CONCLUSION: Patients with cancer related SAH often have poor outcomes. The decrease in platelet and prolonged prothrombin time are the independent risk factors of cancer related SAH, and the joint predictive factor with cutoff value equal to 11.719 should hence serve as a novel biomarker of cancer related SAH.

20.
Inorg Chem ; 61(6): 2954-2961, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35104118

RESUMEN

Iron phosphide nanoparticles (NPs) are promising noble metal-free electrocatalysts for the hydrogen evolution reaction (HER), but they usually show inferior activity due to the limited surface area and oxidative passivation. We reported a facile synthetic method to prepare FeP hollow NPs (HNPs) with various precursors. It was proven that the structural parameters (i.e., size, phosphating temperature, phase, and surfactant) of oxide precursors were correlated to the electrochemically active surface area (ECSA), phase purity, surface oxidation, and hollow morphology of FeP HER catalysts, thus affecting the HER activity. Among the three FeP HNPs, the 9 nm FeP HNPs prepared using the Fe3O4 precursor exhibited the highest overall activity with the lowest overpotential of 76 mV to drive a cathodic current density of 10 mA·cm-2 due to the highest ECSA, while 25 nm FeP prepared using the Fe2O3 precursor showed the highest turnover frequency because of the high phase purity and low surface oxidation degree.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA