Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Mol Cell Biochem ; 478(2): 291-303, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35794289

RESUMEN

A previous study indicated that long non-coding RNA X-inactive-specific transcript (XIST) promoted ethanol-induced HSCs autophagy and activation. Considering the critical role of HSC activation in hepatic fibrosis, the aim of the present study was to reveal the exact role of XIST in liver fibrosis and its underlying mechanism. The expression of XIST in the liver from CCL4-induced mice and control mice as well as human fibrotic liver tissue and healthy liver tissue was examined. The mitochondrial reactive oxygen species (mtROS), mitochondrial membrane potential (MMP), and mitochondrial morphology were measured to assess the mitochondrial damage. The relationship between XIST and miR-539-3p as well as between miR-539-3p and ADAMTS5 was verified by a dual-luciferase reporter assay. The expression levels of HSCs activation markers were examined by Western blot. The results showed that the XIST was upregulated in fibrotic liver tissue, and overexpression of XIST induced mitochondrial dysfunction in hepatocytes. miR-539-3p directly targeted XIST, and ADAMTS5 mRNA was a downstream target of miR-539-3p. Knockdown of miR-539-3p led to an increased mitochondrial damage in hepatocytes in terms of reduced mitochondrial length, decreased MMP, and increased ROS production. However, the depletion of ADAMTS5 reversed the regulatory effect of XIST on mitochondrial damage in hepatocytes and the activation of HSCs. Our study revealed the critical role of the XIST/miR-539-3p/ADAMTS5 axis in regulating mitochondrial damage in hepatocytes and the activation of HSCs. This study may provide a potential therapeutic strategy for the treatment of liver fibrosis.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Hepatocitos/metabolismo , Cirrosis Hepática/genética , Proliferación Celular/genética , Proteína ADAMTS5
2.
Zool Res ; 43(6): 952-965, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36208122

RESUMEN

Pseudomonas plecoglossicida is the pathogen responsible for visceral white spot disease in large yellow croaker (Larimichthys crocea) and orange-spotted grouper (Epinephelus coioides). Previously, RNA sequencing showed that P. plecoglossicida flgK gene expression was significantly up-regulated in orange-spotted grouper spleens during infection. To explore the role of flgK in P. plecoglossicida pathogenicity, RNA interference (RNAi) was performed to silence the P. plecoglossicida flgK gene, and the mutant (flgK-RNAi strain) with the best silencing efficiency (89.40%) was chosen for further study. Results showed that flgK gene silencing significantly attenuated P. plecoglossicida motility, adhesion, and biofilm formation. Compared to those fish infected with the wild-type strain of P. plecoglossicida, orange-spotted grouper infected with the flgK-RNAi strain showed a 55% increase in the survival rate and a one-day delay in time of first death, with fewer pathogens in the spleen and fewer white spots on the spleen surface. RNAi of flgK significantly affected the transcriptome and metabolome of the spleen in infected orange-spotted grouper. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the C-type lectin receptor signaling pathway was the most significantly changed immune-related pathway and the mitogen-activated protein kinase (MAPK) signaling pathway was related to multiple immune-related pathways. Furthermore, arginine biosynthesis and glycerophospholipid metabolism were the most significantly changed metabolism-related pathways. These findings suggest that flgK is a virulence gene of P. plecoglossicida. Furthermore, flgK appears to be involved in the regulation of motility, adhesion, and biofilm formation in P. plecoglossicida, as well as in the regulation of inflammatory and immune responses of orange-spotted grouper to P. plecoglossicida infection.


Asunto(s)
Lubina , Perciformes , Infecciones por Pseudomonas , Animales , Arginina/genética , Proteínas Bacterianas/genética , Lubina/genética , Lubina/metabolismo , Proteínas de Peces/genética , Glicerofosfolípidos , Interacciones Huésped-Patógeno/genética , Inmunidad Innata , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Perciformes/genética , Perciformes/metabolismo , Pseudomonas , Infecciones por Pseudomonas/veterinaria , Transcriptoma , Virulencia/genética
3.
Mol Med ; 28(1): 56, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35568813

RESUMEN

BACKGROUND: The dynamic balance of osteoblast and osteoclast is critical for bone homeostasis and overactive osteoclastic function may lead to osteoporosis. Activating transcription factor 1 (ATF1) is involved in osteoclastogenesis. However, the detailed mechanisms remain to be explored. METHODS: RAW264.7 cells were used and induced toward osteoclast by RANKL administration. We performed flow cytometry, CCK-8 assay and tartrate-resistant acid phosphatase (TRAP) staining to examine cell apoptosis, proliferation and differentiation of RAW264.7 cells, respectively. Mice were subjected to ovariectomy to induce osteoporosis. Micro CT, HE staining and TRAP staining were performed to evaluate bone loss in the OVX mouse model. Bioinformatics methods, luciferase assays and Chromatin Immunoprecipitation (ChIP) were used to predict and validate the interaction among ATF1, miR-214-5p, and ITGA7. RESULTS: ATF1 and miR-214-5p were up-regulated while ITGA7 was inhibited in RANKL-induced osteoclasts. MiR-214-5p was transcriptionally activated by ATF1. ATF1 knockdown suppressed osteoclast formation by miR-214-5p inhibition. ITGA7 was the direct target of miR-214-5p. Knockdown of miR-214-5p abolished osteoclastogenesis, which was reversed by ITGA7 knockdown. In OVX model, miR-214-5p knockdown suppressed osteoclast differentiation and prevented bone loss. CONCLUSION: ATF1/miR-214-5p/ITGA7 axis regulated osteoclast formation both in vivo and in vitro, thereby affecting OVX-induced bone resorption in mice. Knockdown of ATF1 might be a promising strategy to manage osteoporosis.


Asunto(s)
Factor de Transcripción Activador 1 , Antígenos CD , Cadenas alfa de Integrinas , MicroARNs , Osteoporosis , Factor de Transcripción Activador 1/genética , Animales , Antígenos CD/genética , Diferenciación Celular , Femenino , Cadenas alfa de Integrinas/genética , Integrinas , Ratones , MicroARNs/genética , Osteogénesis/genética , Osteoporosis/genética , Células RAW 264.7
4.
Zool Res ; 41(4): 410-422, 2020 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-32521576

RESUMEN

Pseudomonas plecoglossicida is a rod-shaped, gram-negative bacterium with flagella. It causes visceral white spot disease and high mortality in Larimichthys crocea during culture, resulting in serious economic loss. Analysis of transcriptome and quantitative real-time polymerase chain reaction (PCR) data showed that dksA gene expression was significantly up-regulated after 48 h of infection with Epinephelus coioides (log 2FC=3.12, P<0.001). RNAi of five shRNAs significantly reduced the expression of dksA in P. plecoglossicida, and the optimal silencing efficiency was 96.23%. Compared with wild-type strains, the symptoms of visceral white spot disease in L. crocea infected with RNAi strains were reduced, with time of death delayed by 48 h and mortality reduced by 25%. The dksA silencing led to a substantial down-regulation in cellular component-, flagellum-, and ribosome assembly-related genes in P. plecoglossicida, and the significant up-regulation of fliC may be a way in which virulence is maintained in P. plecoglossicida. The GO and KEGG results showed that RNAi strain infection in L. crocea led to the down-regulation of inflammatory factor genes in immune-related pathways, which were associated with multiple immune response processes. Results also showed that dksA was a virulence gene in P. plecoglossicida. Compared with the wild-type strains, RNAi strain infection induced a weaker immune response in L. crocea.


Asunto(s)
Proteínas Bacterianas/genética , Enfermedades de los Peces/inmunología , Perciformes , Infecciones por Pseudomonas/veterinaria , Pseudomonas/fisiología , Factores de Virulencia/genética , Animales , Proteínas Bacterianas/metabolismo , Enfermedades de los Peces/microbiología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología , ARN Bacteriano/análisis , RNA-Seq/veterinaria , Factores de Virulencia/metabolismo
5.
Zool Res ; 41(3): 314-327, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32242645

RESUMEN

Host-pathogen interactions are highly complex, involving large dynamic changes in gene expression during infection. These interactions are fundamental to understanding anti-infection immunity of hosts, as well as the pathogenesis of pathogens. For bacterial pathogens interacting with animal hosts, time-resolved dual RNA-seq of infected tissue is difficult to perform due to low pathogen load in infected tissue. In this study, an acute infection model of Larimichthys crocea infected by Pseudomonas plecoglossicida was established. The spleens of infected fish exhibited typical symptoms, with a maximum bacterial load at two days post-injection (dpi). Time-resolved dual RNA-seq of infected spleens was successfully applied to study host-pathogen interactions between L. crocea and P. plecoglossicida. The spleens of infected L. crocea were subjected to dual RNA-seq, and transcriptome data were compared with those of noninfected spleens or in vitro cultured bacteria. Results showed that pathogen-host interactions were highly dynamically regulated, with corresponding fluctuations in host and pathogen transcriptomes during infection. The expression levels of many immunogenes involved in cytokine-cytokine receptor, Toll-like receptor signaling, and other immune-related pathways were significantly up-regulated during the infection period. Furthermore, metabolic processes and the use of oxygen in L. crocea were strongly affected by P. plecoglossicida infection. The WGCNA results showed that the metabolic process was strongly related to the entire immune process. For P. plecoglossicida, the expression levels of motility-related genes and flagellum assembly-related genes were significantly up-regulated. The results of this study may help to elucidate the interactions between L. crocea and P. plecoglossicida.


Asunto(s)
Enfermedades de los Peces/parasitología , Perciformes , Infecciones por Pseudomonas/veterinaria , Pseudomonas/aislamiento & purificación , Animales , Proteínas Bacterianas/análisis , Interacciones Huésped-Patógeno , Infecciones por Pseudomonas/parasitología , RNA-Seq/veterinaria , Bazo/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA