RESUMEN
Patients carrying mutations in polymerase epsilon/polymerase delta have shown positive responses to immune checkpoint inhibitors. Yet, prospective trials exploring the efficacy in those with polymerase epsilon/polymerase delta mutations are still lacking. A phase II clinical trial was initiated to evaluate the efficacy of toripalimab, a humanized IgG4K monoclonal antibody to human PD-1, in patients with advanced solid tumors with unselected polymerase epsilon/polymerase delta mutations but without microsatellite instability-high. A total of 15 patients were enrolled, 14 of whom were assessed for treatment efficacy. There was a 21.4% overall response rate, with a disease control rate of 57.1%. The median overall survival and median progression-free survival were 17.9 (95% CI 13.5-not reach) months and 2.5 (95% CI 1.4-not reach) months, respectively. For patients with exonuclease domain mutations, the objective response rate was 66.7% (2/3), with a disease control rate of 66.7% (2/3). For those with non-exonuclease domain mutations, the rates were 9.1% (1/11) and 54.5% (6/11), respectively. Notably, patients with PBRM1 gene mutations exhibited a high response rate to toripalimab at 75.0% (3/4). This study showed that neither the exonuclease domain mutations nor non-exonuclease domain mutations could fully predict the efficacy of immunotherapy, urging the need for more investigations to clarify potential immune sensitization differences within polymerase epsilon/polymerase delta mutation variants.
Asunto(s)
Anticuerpos Monoclonales Humanizados , ADN Polimerasa II , Mutación , Neoplasias , Humanos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Femenino , Masculino , Persona de Mediana Edad , Anciano , Neoplasias/genética , Neoplasias/tratamiento farmacológico , ADN Polimerasa II/genética , ADN Polimerasa III/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Adulto , Anciano de 80 o más AñosRESUMEN
LncRNA plays a crucial role in cancer progression and targeting, but it has been difficult to identify the critical lncRNAs involved in colorectal cancer (CRC) progression. We identified FAM83H-AS1 as a tumor-promoting associated lncRNA using 21 pairs of stage IV CRC tissues and adjacent normal tissues. In vitro and in vivo experiments revealed that knockdown of FAM83H-AS1 in CRC cells inhibited tumor proliferation and metastasis, and vice versa. M6A modification is critical for FAM83H-AS1 RNA stability through the writer METTL3 and the readers IGF2BP2/IGFBP3. PTBP1-an RNA binding protein-is responsible for the FAM83H-AS1 function in CRC. T4 (1770-2440 nt) and T5 (2440-2743 nt) on exon 4 of FAM83H-AS1 provide a platform for PTBP1 RRM2 interactions. Our results demonstrated that m6A modification dysregulated the FAM83H-AS1 oncogenic role by phosphorylated PTBP1 on its RNA splicing effect. In patient-derived xenograft models, ASO-FAM83H-AS1 significantly suppressed the growth of gastrointestinal (GI) tumors, not only CRC but also GC and ESCC. The combination of ASO-FAM83H-AS1 and oxaliplatin/cisplatin significantly suppressed tumor growth compared with treatment with either agent alone. Notably, there was pathological complete response in all these three GI cancers. Our findings suggest that FAM83H-AS1 targeted therapy would benefit patients primarily receiving platinum-based therapy in GI cancers.
Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteínas Nucleares Heterogéneas , Metiltransferasas , Proteína de Unión al Tracto de Polipirimidina , ARN Largo no Codificante , Humanos , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , ARN Largo no Codificante/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Animales , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Ratones , Metiltransferasas/genética , Metiltransferasas/metabolismo , Línea Celular Tumoral , Adenosina/análogos & derivados , Adenosina/metabolismo , Masculino , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Estabilidad del ARN , Movimiento Celular , Ratones Endogámicos BALB C , Ribonucleósido Difosfato Reductasa , Proteínas de Unión al ARNRESUMEN
Gastric cancer (GC) is one of the most common clinical malignant tumors worldwide, with high morbidity and mortality. Presently, the overall response rate to immunotherapy is low, and current methods for predicting the prognosis of GC are not optimal. Therefore, novel biomarkers with accuracy, efficiency, stability, performance ratio, and wide clinical application are needed. Based on public data sets, the chemotherapy cohort and immunotherapy cohort from Sun Yat-sen University Cancer Center, a series of bioinformatics analyses, such as differential expression analysis, survival analysis, drug sensitivity prediction, enrichment analysis, tumor immune dysfunction and exclusion analysis, single-sample gene set enrichment analysis, stemness index calculation, and immune cell infiltration analysis, were performed for screening and preliminary exploration. Immunohistochemical staining and in vitro experiments were performed for further verification. Overexpression of COX7A1 promoted the resistance of GC cells to Oxaliplatin. COX7A1 may induce immune escape by regulating the number of fibroblasts and their cellular communication with immune cells. In summary, measuring the expression levels of COX7A1 in the clinic may be useful in predicting the prognosis of GC patients, the degree of chemotherapy resistance, and the efficacy of immunotherapy.
Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Inmunoterapia , Oxaliplatino , Neoplasias Gástricas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Inmunoterapia/métodos , Oxaliplatino/uso terapéutico , Oxaliplatino/farmacología , Pronóstico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/terapiaRESUMEN
Epigenetic modifications of chromatin, including histone acetylation, and tumor angiogenesis play pivotal roles in creating an immunosuppressive tumor microenvironment. In the randomized phase 2 CAPability-01 trial, we investigated the potential efficacy of combining the programmed cell death protein-1 (PD-1) monoclonal antibody sintilimab with the histone deacetylase inhibitor (HDACi) chidamide with or without the anti-vascular endothelial growth factor (VEGF) monoclonal antibody bevacizumab in patients with unresectable chemotherapy-refractory locally advanced or metastatic microsatellite stable/proficient mismatch repair (MSS/pMMR) colorectal cancer. Forty-eight patients were randomly assigned to either the doublet arm (sintilimab and chidamide, n = 23) or the triplet arm (sintilimab, chidamide and bevacizumab, n = 25). The primary endpoint of progression-free survival (PFS) rate at 18 weeks (18wPFS rate) was met with a rate of 43.8% (21 of 48) for the entire study population. Secondary endpoint results include a median PFS of 3.7 months, an overall response rate of 29.2% (14 of 48), a disease control rate of 56.3% (27 of 48) and a median duration of response of 12.0 months. The secondary endpoint of median overall survival time was not mature. The triplet arm exhibited significantly improved outcomes compared to the doublet arm, with a greater 18wPFS rate (64.0% versus 21.7%, P = 0.003), higher overall response rate (44.0% versus 13.0%, P = 0.027) and longer median PFS rate (7.3 months versus 1.5 months, P = 0.006). The most common treatment-emergent adverse events observed in both the triplet and doublet arms included proteinuria, thrombocytopenia, neutropenia, anemia, leukopenia and diarrhea. There were two treatment-related fatalities (hepatic failure and pneumonitis). Analysis of bulk RNA sequencing data from the patients suggested that the triplet combination enhanced CD8+ T cell infiltration, resulting in a more immunologically active tumor microenvironment. Our study suggests that the combination of a PD-1 antibody, an HDACi, and a VEGF antibody could be a promising treatment regimen for patients with MSS/pMMR advanced colorectal cancer. ClinicalTrials.gov registration: NCT04724239 .
Asunto(s)
Aminopiridinas , Benzamidas , Neoplasias Colorrectales , Inhibidores de Histona Desacetilasas , Humanos , Anticuerpos Monoclonales/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bevacizumab/efectos adversos , Bevacizumab/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Inhibidores de Histona Desacetilasas/efectos adversos , Inhibidores de Histona Desacetilasas/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral , Factor A de Crecimiento Endotelial VascularRESUMEN
BACKGROUND: GC is a highly heterogeneous tumor with different responses to immunotherapy, and the positive response depends on the unique interaction between the tumor and the tumor microenvironment (TME). However, the currently available methods for prognostic prediction are not satisfactory. Therefore, this study aims to construct a novel model that integrates relevant gene sets to predict the clinical efficacy of immunotherapy and the prognosis of GC patients based on machine learning. METHODS: Seven GC datasets were collected from the Gene Expression Omnibus (GEO) database, The Cancer Genome Atlas (TCGA) database and literature sources. Based on the immunotherapy cohort, we first obtained a list of immunotherapy related genes through differential expression analysis. Then, Cox regression analysis was applied to divide these genes with prognostic significancy into protective and risky types. Then, the Single Sample Gene Set Enrichment Analysis (ssGSEA) algorithm was used to score the two categories of gene sets separately, and the scores differences between the two gene sets were used as the basis for constructing the prognostic model. Subsequently, Weighted Correlation Network Analysis (WGCNA) and Cytoscape were applied to further screen the gene sets of the constructed model, and finally COX7A1 was selected for the exploration and prediction of the relationship between the clinical efficacy of immunotherapy for GC. The correlation between COX7A1 and immune cell infiltration, drug sensitivity scoring, and immunohistochemical staining were performed to initially understand the potential role of COX7A1 in the development and progression of GC. Finally, the differential expression of COX7A1 was verified in those GC patients receiving immunotherapy. RESULTS: First, 47 protective genes and 408 risky genes were obtained, and the ssGSEA algorithm was applied for model construction, showing good prognostic discrimination ability. In addition, the patients with high model scores showed higher TMB and MSI levels, and lower tumor heterogeneity scores. Then, it is found that the COX7A1 expressions in GC tissues were significantly lower than those in their corresponding paracancerous tissues. Meanwhile, the patients with high COX7A1 expression showed higher probability of cancer invasion, worse clinical efficacy of immunotherapy, worse overall survival (OS) and worse disease-free survival (DFS). CONCLUSIONS: The ssGSEA score we constructed can serve as a biomarker for GC patients and provide important guidance for individualized treatment. In addition, the COX7A1 gene can accurately distinguish the prognosis of GC patients and predict the clinical efficacy of immunotherapy for GC patients.
Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Pronóstico , Biomarcadores , Inmunoterapia , Microambiente Tumoral/genética , Complejo IV de Transporte de ElectronesRESUMEN
Gastric cancer is one of the most frequent cancers in the world. Emerging clinical data show that ubiquitination system disruptions are likely involved in carcinoma genesis and progression. However, the precise role of ubiquitin (Ub)-mediated control of oncogene products or tumor suppressors in gastric cancer is unknown. Tripartite motif-containing 50 (TRIM50), an E3 ligase, was discovered by high-output screening of ubiquitination-related genes in tissues from patients with gastric cancer to be among the ubiquitination-related enzymes whose expression was most downregulated in gastric cancer. With two different databases, we verified that TRIM50 expression was lower in tumor tissues relative to normal tissues. TRIM50 also suppressed gastric cancer cell growth and migration in vitro and in vivo. JUP, a transcription factor, was identified as a new TRIM50 ubiquitination target by MS and coimmunoprecipitation experiments. TRIM50 increases JUP K63-linked polyubiquitination mostly at the K57 site. We discovered that the K57 site is critical for JUP nuclear translocation by prediction with the iNuLoC website and further studies. Furthermore, ubiquitination of the K57 site limits JUP nuclear translocation, consequently inhibiting the MYC signaling pathway. These findings identify TRIM50 as a novel coordinator in gastric cancer cells, providing a potential target for the development of new gastric cancer treatment strategies. IMPLICATIONS: TRIM50 regulates gastric cancer tumor progression, and these study suggest TRIM50 as a new cancer target.
Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Tumoral , gamma Catenina/genética , gamma Catenina/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismoRESUMEN
OBJECTIVE: To review and analyze the efficacy and safety of mifepristone combined with ethacridine lactate for induction of stillbirth in the third trimester. METHODS: All patients with stillbirth in late pregnancy (≥ 28 weeks) in a university-affiliated maternity center from October 2016 to September 2021 were included in this study. After exclusion, patients were divided into ethacridine lactate and non-ethacridine lactate groups according to induction methods. Logistic regression was conducted to identify the risks of complications. RESULTS: We identified 122 patients that experienced stillbirth (5' Apgar score = 0) in third-trimester from the 5-year total deliveries in the hospital, among whom 39 stillbirths that resulted from termination of pregnancy for severe fetal anomalies and 1 stillbirth that was in twin pregnancy were excluded. Thus, 82 cases with stillbirths (dead before induction) were included in the analyses. In the 82 cases, 49 (59.76%) accepted intra-amniotic ethacridine lactate induction with 47 (95.92%, 47/49) successfully induced. No statistical difference was observed in induction failure rate between ethacridine dosage groups of < 75mg and ≥ 75mg (0/25, vs. 2/24, respectively; P > 0.05). The ethacridine lactate induction group showed no increased risks in complications (6.12%, 3/49), compared with non-ethacridine lactate group (12.12%, 4/33) (P = 0.35, OR, 0.47, 95%CI, 0.10 to 2.27). CONCLUSION: Mifepristone combined with ethacridine lactate is a safe and low-risk induction method for patients with stillbirth in the third trimester.
Asunto(s)
Aborto Inducido , Mifepristona , Humanos , Femenino , Embarazo , Mifepristona/efectos adversos , Etacridina/efectos adversos , Tercer Trimestre del Embarazo , Mortinato/epidemiología , Aborto Inducido/métodos , Segundo Trimestre del Embarazo , China/epidemiología , LactatosRESUMEN
AIMS: Rheumatoid arthritis (RA) is a systematic autoimmune disorder, characterized by synovial inflammation, bone and cartilage destruction, and disease involvement in multiple organs. Although numerous drugs are employed in RA treatment, some respond little and suffer from severe side effects. This study aimed to screen the candidate therapeutic targets and promising drugs in a novel method. METHODS: We developed a module-based and cumulatively scoring approach that is a deeper-layer application of weighted gene co-expression network (WGCNA) and connectivity map (CMap) based on the high-throughput datasets. RESULTS: Four noteworthy RA-related modules were identified, revealing the immune- and infection-related biological processes and pathways involved in RA. HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DPB1, HLA-DQB1, HLA-DRA, HLA-DRB1, BLNK, BTK, CD3D, CD4, IL2RG, INPP5D, LCK, PTPRC, RAC2, SYK, and VAV1 were recognized as the key hub genes with high connectivity in gene regulation networks and gene pathway networks. Moreover, the long noncoding RNAs (lncRNAs) in the RA-related modules, such as FAM30A and NEAT1, were identified as the indispensable interactors with the hub genes. Finally, candidate drugs were screened by developing a cumulatively scoring approach based on the selected modules. Niclosamide and the other compounds of T-type calcium channel blocker, IKK inhibitor, and PKC activator, HIF activator, and proteasome inhibitor, which harbour the similar gene signature with niclosamide, were promising drugs with high specificity and broad coverage for the RA-related modules. CONCLUSION: This study provides not only the promising targets and drugs for RA but also a novel methodological insight into the target and drug screening.Cite this article: Bone Joint Res 2020;9(8):501-514.