Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Front Oncol ; 13: 1228994, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37736546

RESUMEN

Purpose: This study aimed to determine the diagnostic value of diffusion-weighted imaging (DWI) and to elucidate the clinical characteristics of medial group retropharyngeal lymph nodes (RLNs) based on multi-modal imaging. Also, we intended to explore the feasibility of optimizing the CTV60 boundary based on the characteristics of medial group RLNs. Methods: A total of 549 patients with nasopharyngeal carcinoma received magnetic resonance imaging (MRI), DWI, and contrast-enhanced computed tomography (CT) to detect and evaluate clinical characteristics of medial group RLNs. [18F]Fluorodeoxyglucose positron emission tomography/computed tomography was utilized to identify fluorodeoxyglucose uptaking and contrast-enhanced CT to ensure the reliability of CTV optimization during radiotherapy. The DESdC (Drinking, Eating, Swallowing Difficulties, and Coughing while Eating or Drinking) score was utilized to evaluate swallowing disability. Results: Fourteen of 549 patients had medial group RLNs with a transverse diameter of 2.0-19.0 mm, which distributed between the upper margin of 1st cervical vertebra (C1) and the upper one-third of C3. Lasso regression and Pearson chi-square test suggested that its occurrence was associated with stage N, bilateral cervical lymph node metastases, especially when the transverse diameter of cervical lymph nodes was > 3 cm. The sensitivity of DWI, T2 STIR, and contrast-enhanced CT was 100%, 57.1%, and 21.4%, respectively. We optimized CTV60 of medial group RLNs from the base of skull to the upper edge of C2 excluding specific cases. For patients with CTV60 optimization, radiation dose and volume of swallowing structures decreased obviously. Based on our radiotherapy strategy on CTV60, acute toxicities of enrolled patients were well tolerated. Ninety-six of 549 patients had scores with DESdC score. Eighty-three patients scored 1, seven patients scored 2, one patient scored 3, and three patients scored 4. The median interval from the onset of symptoms was 72 (4-114) months. The 5-year overall survival, progression-free survival, local recurrence-free survival, and distant metastasis-free survival were 87%, 80%, 93%, and 85%, respectively. None of the patients with regional recurrence happened in the optimized region. Conclusion: DWI possesses superiorities in displaying lymph nodes. Based on the low incidence of the medial RLNs, CTV60 of medial group RLNs from the base of skull to the upper edge of C2 is feasible and has dosimetric advantages for protecting swallowing structures.

2.
Brain Pathol ; 33(6): e13189, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37505935

RESUMEN

Calcification of the cerebral microvessels in the basal ganglia in the absence of systemic calcium and phosphate imbalance is a hallmark of primary familial brain calcification (PFBC), a rare neurodegenerative disorder. Mutation in genes encoding for sodium-dependent phosphate transporter 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), platelet-derived growth factor B (PDGFB), platelet-derived growth factor receptor beta (PDGFRB), myogenesis regulating glycosidase (MYORG), and junctional adhesion molecule 2 (JAM2) are known to cause PFBC. Loss-of-function mutations in XPR1, the only known inorganic phosphate exporter in metazoans, causing dominantly inherited PFBC was first reported in 2015 but until now no studies in the brain have addressed whether loss of one functional allele leads to pathological alterations in mice, a commonly used organism to model human diseases. Here we show that mice heterozygous for Xpr1 (Xpr1WT/lacZ ) present with reduced inorganic phosphate levels in the cerebrospinal fluid and age- and sex-dependent growth of vascular calcifications in the thalamus. Vascular calcifications are surrounded by vascular basement membrane and are located at arterioles in the smooth muscle layer. Similar to previously characterized PFBC mouse models, vascular calcifications in Xpr1WT/lacZ mice contain bone matrix proteins and are surrounded by reactive astrocytes and microglia. However, microglial activation is not confined to calcified vessels but shows a widespread presence. In addition to vascular calcifications, we observed vessel tortuosity and transmission electron microscopy analysis revealed microangiopathy-endothelial swelling, phenotypic alterations in vascular smooth muscle cells, and thickening of the basement membrane.


Asunto(s)
Encefalopatías , Enfermedades Neurodegenerativas , Calcificación Vascular , Humanos , Animales , Ratones , Encefalopatías/patología , Fosfatos/metabolismo , Encéfalo/patología , Receptor de Retrovirus Xenotrópico y Politrópico , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Enfermedades Neurodegenerativas/patología , Mutación , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo
3.
Nat Commun ; 14(1): 3345, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291094

RESUMEN

Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial-specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. We apply this approach to Hevin knockout mice, where AAV-X1-mediated ectopic expression of the synaptogenic protein Sparcl1/Hevin in brain endothelial cells rescued synaptic deficits.


Asunto(s)
Células Endoteliales , Roedores , Ratones , Ratas , Animales , Células Endoteliales/metabolismo , Roedores/genética , Macaca mulatta/genética , Encéfalo/metabolismo , Tropismo/genética , Ratones Noqueados , Dependovirus/metabolismo , Vectores Genéticos/genética , Transducción Genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Matriz Extracelular/genética
4.
Front Immunol ; 14: 1028404, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817485

RESUMEN

Objective: To identify the gene subtypes related to immune cells of cholangiocarcinoma and construct an immune score model to predict the immunotherapy efficacy and prognosis for cholangiocarcinoma. Methods: Based on principal component analysis (PCA) algorithm, The Cancer Genome Atlas (TCGA)-cholangiocarcinoma, GSE107943 and E-MTAB-6389 datasets were combined as Joint data. Immune genes were downloaded from ImmPort. Univariate Cox survival analysis filtered prognostically associated immune genes, which would identify immune-related subtypes of cholangiocarcinoma. Least absolute shrinkage and selection operator (LASSO) further screened immune genes with prognosis values, and tumor immune score was calculated for patients with cholangiocarcinoma after the combination of the three datasets. Kaplan-Meier curve analysis determined the optimal cut-off value, which was applied for dividing cholangiocarcinoma patients into low and high immune score group. To explore the differences in tumor microenvironment and immunotherapy between immune cell-related subtypes and immune score groups of cholangiocarcinoma. Results: 34 prognostic immune genes and three immunocell-related subtypes with statistically significant prognosis (IC1, IC2 and IC3) were identified. Among them, IC1 and IC3 showed higher immune cell infiltration, and IC3 may be more suitable for immunotherapy and chemotherapy. 10 immune genes with prognostic significance were screened by LASSO regression analysis, and a tumor immune score model was constructed. Kaplan-Meier (KM) and receiver operating characteristic (ROC) analysis showed that RiskScore had excellent prognostic prediction ability. Immunohistochemical analysis showed that 6 gene (NLRX1, AKT1, CSRP1, LEP, MUC4 and SEMA4B) of 10 genes were abnormal expressions between cancer and paracancer tissue. Immune cells infiltration in high immune score group was generally increased, and it was more suitable for chemotherapy. In GSE112366-Crohn's disease dataset, 6 of 10 immune genes had expression differences between Crohn's disease and healthy control. The area under ROC obtained 0.671 based on 10-immune gene signature. Moreover, the model had a sound performance in Crohn's disease. Conclusion: The prediction of tumor immune score model in predicting immune microenvironment, immunotherapy and chemotherapy in patients with cholangiocarcinoma has shown its potential for indicating the effect of immunotherapy on patients with cholangiocarcinoma.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Enfermedad de Crohn , Humanos , Pronóstico , Conductos Biliares Intrahepáticos , Microambiente Tumoral , Proteínas Mitocondriales
5.
bioRxiv ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36711773

RESUMEN

Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds and rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and ex vivo human brain slices although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. Vasculature-secreted Hevin (a synaptogenic protein) rescued synaptic deficits in a mouse model.

6.
J Cereb Blood Flow Metab ; 43(5): 763-777, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36545806

RESUMEN

Pericytes are the mural cells of the microvascular network that are in close contact with underlying endothelial cells. Endothelial-secreted PDGFB leads to recruitment of pericytes to the vessel wall, but this is disrupted in Pdgfbret/ret mice when the PDGFB retention motif is deleted. This results in severely reduced pericyte coverage on blood vessels. In this study, we investigated vascular abnormalities and hemodynamics in Pdgfbret/ret mice throughout the cerebrovascular network and in different cortical layers by in vivo two-photon microscopy. We confirmed that Pdgfbret/ret mice are severely deficient in pericytes throughout the vascular network, with enlarged brain blood vessels and a reduced number of vessel branches. Red blood cell velocity, linear density, and tube hematocrit were reduced in Pdgfbret/ret mice, which may impair oxygen delivery to the tissue. We also measured intravascular PO2 and found that concentrations were higher in cortical Layer 2/3 in Pdgfbret/ret mice, indicative of reduced blood oxygen extraction. Finally, we found that Pdgfbret/ret mice had a reduced capacity for vasodilation in response to an acetazolamide challenge during functional MRI imaging. Taken together, these results suggest that severe pericyte deficiency can lead to vascular abnormalities and altered cerebral blood flow, reminiscent of pathologies such as arteriovenous malformations.


Asunto(s)
Células Endoteliales , Pericitos , Ratones , Animales , Proteínas Proto-Oncogénicas c-sis/metabolismo , Pericitos/metabolismo , Modelos Animales de Enfermedad , Becaplermina/metabolismo , Hemodinámica , Oxígeno/metabolismo
7.
Front Cell Dev Biol ; 10: 849469, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35450291

RESUMEN

Electron microscopy is the primary approach to study ultrastructural features of the cerebrovasculature. However, 2D snapshots of a vascular bed capture only a small fraction of its complexity. Recent efforts to synaptically map neuronal circuitry using volume electron microscopy have also sampled the brain microvasculature in 3D. Here, we perform a meta-analysis of 7 data sets spanning different species and brain regions, including two data sets from the MICrONS consortium that have made efforts to segment vasculature in addition to all parenchymal cell types in mouse visual cortex. Exploration of these data have revealed rich information for detailed investigation of the cerebrovasculature. Neurovascular unit cell types (including, but not limited to, endothelial cells, mural cells, perivascular fibroblasts, microglia, and astrocytes) could be discerned across broad microvascular zones. Image contrast was sufficient to identify subcellular details, including endothelial junctions, caveolae, peg-and-socket interactions, mitochondria, Golgi cisternae, microvilli and other cellular protrusions of potential significance to vascular signaling. Additionally, non-cellular structures including the basement membrane and perivascular spaces were visible and could be traced between arterio-venous zones along the vascular wall. These explorations revealed structural features that may be important for vascular functions, such as blood-brain barrier integrity, blood flow control, brain clearance, and bioenergetics. They also identified limitations where accuracy and consistency of segmentation could be further honed by future efforts. The purpose of this article is to introduce these valuable community resources within the framework of cerebrovascular research. We do so by providing an assessment of their vascular contents, identifying features of significance for further study, and discussing next step ideas for refining vascular segmentation and analysis.

8.
Front Aging Neurosci ; 14: 848495, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309892

RESUMEN

Vascular calcifications are characterized by the ectopic deposition of calcium and phosphate in the vascular lumen or wall. They are a common finding in computed tomography scans or during autopsy and are often directly related to a pathological condition. While the pathogenesis and functional consequences of vascular calcifications have been intensively studied in some peripheral organs, vascular calcification, and its pathogenesis in the central nervous system is poorly characterized and understood. Here, we review the occurrence of vessel calcifications in the brain in the context of aging and various brain diseases. We discuss the pathomechanism of brain vascular calcification in primary familial brain calcification as an example of brain vessel calcification. A particular focus is the response of microglia to the vessel calcification in the brain and their role in the clearance of calcifications.

9.
Fluids Barriers CNS ; 19(1): 6, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033138

RESUMEN

BACKGROUND: Ways to prevent disease-induced vascular modifications that accelerate brain damage remain largely elusive. Improved understanding of perivascular cell signalling could provide unparalleled insight as these cells impact vascular stability and functionality of the neurovascular unit as a whole. Identifying key drivers of astrocyte and pericyte responses that modify cell-cell interactions and crosstalk during injury is key. At the cellular level, injury-induced outcomes are closely entwined with activation of the hypoxia-inducible factor-1 (HIF-1) pathway. Studies clearly suggest that endothelial HIF-1 signalling increases blood-brain barrier permeability but the influence of perivascular HIF-1 induction on outcome is unknown. Using novel mouse lines with astrocyte and pericyte targeted HIF-1 loss of function, we herein show that vascular stability in vivo is differentially impacted by perivascular hypoxia-induced HIF-1 stabilization. METHODS: To facilitate HIF-1 deletion in adult mice without developmental complications, novel Cre-inducible astrocyte-targeted (GFAP-CreERT2; HIF-1αfl/fl and GLAST-CreERT2; HIF-1αfl/fl) and pericyte-targeted (SMMHC-CreERT2; HIF-1αfl/fl) transgenic animals were generated. Mice in their home cages were exposed to either normoxia (21% O2) or hypoxia (8% O2) for 96 h in an oxygen-controlled humidified glove box. All lines were similarly responsive to hypoxic challenge and post-Cre activation showed significantly reduced HIF-1 target gene levels in the individual cells as predicted. RESULTS: Unexpectedly, hypoxia-induced vascular remodelling was unaffected by HIF-1 loss of function in the two astrocyte lines but effectively blocked in the pericyte line. In correlation, hypoxia-induced barrier permeability and water accumulation were abrogated only in pericyte targeted HIF-1 loss of function mice. In contrast to expectation, brain and serum levels of hypoxia-induced VEGF, TGF-ß and MMPs (genes known to mediate vascular remodelling) were unaffected by HIF-1 deletion in all lines. However, in agreement with the permeability data, immunofluorescence and electron microscopy showed clear prevention of hypoxia-induced tight junction disruption in the pericyte loss of function line. CONCLUSION: This study shows that pericyte but not astrocyte HIF-1 stabilization modulates endothelial tight junction functionality and thereby plays a pivotal role in hypoxia-induced vascular dysfunction. Whether the cells respond similarly or differentially to other injury stimuli will be of significant relevance.


Asunto(s)
Astrocitos/metabolismo , Permeabilidad Capilar/fisiología , Corteza Cerebral/metabolismo , Endotelio Vascular/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Pericitos/metabolismo , Animales , Ratones , Ratones Transgénicos
10.
Fluids Barriers CNS ; 18(1): 34, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321020

RESUMEN

BACKGROUND: Genetic variation in a population has an influence on the manifestation of monogenic as well as multifactorial disorders, with the underlying genetic contribution dependent on several interacting variants. Common laboratory mouse strains used for modelling human disease lack the genetic variability of the human population. Therefore, outcomes of rodent studies show limited relevance to human disease. The functionality of brain vasculature is an important modifier of brain diseases. Importantly, the restrictive interface between blood and brain-the blood-brain barrier (BBB) serves as a major obstacle for the drug delivery into the central nervous system (CNS). Using genetically diverse mouse strains, we aimed to investigate the phenotypic and transcriptomic variation of the healthy BBB in different inbred mouse strains. METHODS: We investigated the heterogeneity of brain vasculature in recently wild-derived mouse strains (CAST/EiJ, WSB/EiJ, PWK/PhJ) and long-inbred mouse strains (129S1/SvImJ, A/J, C57BL/6J, DBA/2J, NOD/ShiLtJ) using different phenotypic arms. We used immunohistochemistry and confocal laser microscopy followed by quantitative image analysis to determine vascular density and pericyte coverage in two brain regions-cortex and hippocampus. Using a low molecular weight fluorescence tracer, sodium fluorescein and spectrophotometry analysis, we assessed BBB permeability in young and aged mice of selected strains. For further phenotypic characterization of endothelial cells in inbred mouse strains, we performed bulk RNA sequencing of sorted endothelial cells isolated from cortex and hippocampus. RESULTS: Cortical vessel density and pericyte coverage did not differ among the investigated strains, except in the cortex, where PWK/PhJ showed lower vessel density compared to NOD/ShiLtJ, and a higher pericyte coverage than DBA/2J. The vascular density in the hippocampus differed among analyzed strains but not the pericyte coverage. The staining patterns of endothelial arteriovenous zonation markers were similar in different strains. BBB permeability to a small fluorescent tracer, sodium fluorescein, was also similar in different strains, except in the hippocampus where the CAST/EiJ showed higher permeability than NOD/ShiLtJ. Transcriptomic analysis of endothelial cells revealed that sex of the animal was a major determinant of gene expression differences. In addition, the expression level of several genes implicated in endothelial function and BBB biology differed between wild-derived and long-inbred mouse strains. In aged mice of three investigated strains (DBA/2J, A/J, C57BL/6J) vascular density and pericyte coverage did not change-expect for DBA/2J, whereas vascular permeability to sodium fluorescein increased in all three strains. CONCLUSIONS: Our analysis shows that although there were no major differences in parenchymal vascular morphology and paracellular BBB permeability for small molecular weight tracer between investigated mouse strains or sexes, transcriptomic differences of brain endothelial cells point to variation in gene expression of the intact BBB. These baseline variances might be confounding factors in pathological conditions that may lead to a differential functional outcome dependent on the sex or genetic polymorphism.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar/fisiología , Corteza Cerebral/metabolismo , Variación Genética/fisiología , Hipocampo/metabolismo , Animales , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Femenino , Fluoresceína/administración & dosificación , Fluoresceína/metabolismo , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/metabolismo , Variación Genética/efectos de los fármacos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos NOD , Especificidad de la Especie
11.
Angiogenesis ; 24(4): 823-842, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34046769

RESUMEN

Pericytes play essential roles in blood-brain barrier integrity and their dysfunction is implicated in neurological disorders such as stroke although the underlying mechanisms remain unknown. Hypoxia-inducible factor-1 (HIF-1), a master regulator of injury responses, has divergent roles in different cells especially during stress scenarios. On one hand HIF-1 is neuroprotective but on the other it induces vascular permeability. Since pericytes are critical for barrier stability, we asked if pericyte HIF-1 signaling impacts barrier integrity and injury severity in a mouse model of ischemic stroke. We show that pericyte HIF-1 loss of function (LoF) diminishes ischemic damage and barrier permeability at 3 days reperfusion. HIF-1 deficiency preserved barrier integrity by reducing pericyte death thereby maintaining vessel coverage and junctional protein organization, and suppressing vascular remodeling. Importantly, considerable improvements in sensorimotor function were observed in HIF-1 LoF mice indicating that better vascular functionality post stroke improves outcome. Thus, boosting vascular integrity by inhibiting pericytic HIF-1 activation and/or increasing pericyte survival may be a lucrative option to accelerate recovery after severe brain injury.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica , Hipoxia , Factor 1 Inducible por Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Pericitos
12.
Fluids Barriers CNS ; 18(1): 13, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33736658

RESUMEN

BACKGROUND: Astrocytes (AC) are essential for brain homeostasis. Much data suggests that AC support and protect the vascular endothelium, but increasing evidence indicates that during injury conditions they may lose their supportive role resulting in endothelial cell activation and BBB disturbance. Understanding the triggers that flip this switch would provide invaluable information for designing new targets to modulate the brain vascular compartment. Hypoxia-inducible factor-1 (HIF-1) has long been assumed to be a culprit for barrier dysfunction as a number of its target genes are potent angiogenic factors. Indeed AC themselves, reservoirs of an array of different growth factors and molecules, are frequently assumed to be the source of such molecules although direct supporting evidence is yet to be published. Being well known reservoirs of HIF-1 dependent angiogenic molecules, we asked if AC HIF-1 dependent paracrine signaling drives brain EC disturbance during hypoxia. METHODS: First we collected conditioned media from control and siRNA-mediated HIF-1 knockdown primary rat AC that had been exposed to normoxic or hypoxic conditions. The conditioned media was then used to culture normoxic and hypoxic (1% O2) rat brain microvascular EC (RBE4) for 6 and 24 h. Various activation parameters including migration, proliferation and cell cycling were assessed and compared to untreated controls. In addition, tight junction localization and barrier stability per se (via permeability assay) was evaluated. RESULTS: AC conditioned media maintained both normoxic and hypoxic EC in a quiescent state by suppressing EC metabolic activity and proliferation. By FACs we observed reduced cell cycling with an increased number of cells in G0 phase and reduced cell numbers in M phase compared to controls. EC migration was also blocked by AC conditioned media and in correlation hypoxic tight junction organization and barrier functionality was improved. Surprisingly however, AC HIF-1 deletion did not impact EC responses or barrier stability during hypoxia. CONCLUSIONS: This study demonstrates that AC HIF-1 dependent paracrine signaling does not contribute to AC modulation of EC barrier function under normoxic or hypoxic conditions. Thus other cell types likely mediate EC permeability in stress scenarios. Our data does however highlight the continuous protective effect of AC on the barrier endothelium. Exploring these protective mechanisms in more detail will provide essential insight into ways to prevent barrier disturbance during injury and disease.


Asunto(s)
Astrocitos/metabolismo , Células Endoteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , ARN Interferente Pequeño , Ratas , Transfección
14.
Redox Biol ; 34: 101576, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32502899

RESUMEN

Blood-brain barrier (BBB) impairment clearly accelerates brain disease progression. As ways to prevent injury-induced barrier dysfunction remain elusive, better understanding of how BBB cells interact and modulate barrier integrity is needed. Our metabolomic profiling study showed that cell-specific adaptation to injury correlates well with metabolic reprogramming at the BBB. In particular we noted that primary astrocytes (AC) contain comparatively high levels of glutathione (GSH)-related metabolites compared to primary endothelial cells (EC). Injury significantly disturbed redox balance in EC but not AC motivating us to assess 1) whether an AC-EC GSH shuttle supports barrier stability and 2) the impact of GSH on EC function. Using an isotopic labeling/tracking approach combined with Time-of-Flight Mass Spectrometry (TOF-MS) we prove that AC constantly shuttle GSH to EC even under resting conditions - a flux accelerated by injury conditions in vitro. In correlation, co-culture studies revealed that blocking AC GSH generation and secretion via siRNA-mediated γ-glutamyl cysteine ligase (GCL) knockdown significantly compromises EC barrier integrity. Using different GSH donors, we further show that exogenous GSH supplementation improves barrier function by maintaining organization of tight junction proteins and preventing injury-induced tight junction phosphorylation. Thus the AC GSH shuttle is key for maintaining EC redox homeostasis and BBB stability suggesting GSH supplementation could improve recovery after brain injury.


Asunto(s)
Astrocitos , Glutatión , Barrera Hematoencefálica , Células Endoteliales , Uniones Estrechas
15.
Sci Rep ; 10(1): 7760, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385409

RESUMEN

On one hand blood-brain barrier (BBB) disturbance aggravates disease progression, on the other it prevents drug access and impedes therapeutic efficacy. Effective ways to modulate barrier function and resolve these issues are sorely needed. Convinced that better understanding of cell-oriented BBB responses could provide valuable insight, and the fact that metabolic dysregulation is prominent in many vascular-related pathological processes associated with BBB disturbance, we hypothesized that differential cell-specific metabolic adaptation majorly influences physiological and pathological barrier functionality. Untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomic profiling was used to obtain individual biochemical fingerprints of primary astrocytes (AC) and brain endothelial cells (EC) during normoxic conditions and increasing hypoxic/ischemic injury and thus a functional readout of cell status. Bioinformatic analyses showed each cell had a distinct metabolic signature. Corroborating their roles in BBB and CNS protection, AC showed an innate ability to dynamically alter their metabolome depending on the insult. Surprisingly, in complete contrast, EC largely maintained their normoxic characteristics in injury situations and their profiles diverged from those of non-brain origin. Tissue specificity/origin is clearly important when considering EC responses. Focusing on energy capacity and utilization we discuss how cell-specific metabolic adaptive capabilities could influence vascular stability and the possibility that altering metabolite levels may be an effective way to modulate brain EC function. Overall this work novel insight into cell-associated metabolic changes, and provides a powerful resource for understanding BBB changes during different injury scenarios.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Lesiones Encefálicas/metabolismo , Metaboloma , Metabolómica , Adaptación Fisiológica , Aminoácidos/metabolismo , Animales , Astrocitos/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Lesiones Encefálicas/etiología , Cromatografía Liquida , Biología Computacional/métodos , Células Endoteliales/metabolismo , Glucosa/metabolismo , Glucólisis , Humanos , Espectrometría de Masas , Redes y Vías Metabólicas , Especificidad de Órganos , Consumo de Oxígeno , Ratas , Estrés Fisiológico
16.
Exp Cell Res ; 383(2): 111503, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31336100

RESUMEN

Hypoxic blood-brain barrier (BBB) dysfunction is a common feature of CNS diseases however mechanisms underlying barrier disturbance are still largely unknown. This study investigated the role of transforming growth factor ß (TGFß), a cytokine known to induce expression of the proprotein convertase Furin, in hypoxia-mediated barrier compromise. We show that exposure of brain endothelial cells (ECs) to hypoxia (1% O2) rapidly stimulates their migration. Additional exogenous TGFß (0.4 nM) exposure potentiated this effect and increased Furin expression in a TGFß type I receptor activin-like kinase 5 (ALK5) - dependent manner (prevented by 10 µM SB431542). Furin inhibition prevented hypoxia-induced EC migration and blocked TGFß-induced potentiation suggesting existence of a feedback loop. TGFß and Furin were also critical for hypoxia-induced BBB dysfunction. TGFß treatment aggravated hypoxia-induced BBB permeability but ALK5 or Furin blockade reversed injury-induced permeability changes. Thus during insult Furin compromises endothelial integrity by mediating the effects of TGFß. Targeting the Furin or ALK5 pathway may offer novel therapeutic strategies for improving BBB stability and CNS function during disease.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Furina/antagonistas & inhibidores , Hipoxia/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/fisiología , Factor de Crecimiento Transformador beta/farmacología , Clorometilcetonas de Aminoácidos/farmacología , Animales , Benzamidas/farmacología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Permeabilidad Capilar/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Células Cultivadas , Dioxoles/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Células Endoteliales/fisiología , Fluoresceínas/farmacología , Furina/genética , Furina/metabolismo , Hipoxia/complicaciones , Hipoxia/patología , Masculino , Ratas , Ratas Wistar , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/fisiología
17.
Radiat Oncol ; 13(1): 194, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30285884

RESUMEN

BACKGROUND: Radiation therapy is the standard radical treatment for nasopharyngeal carcinoma (NPC) but also causes transient as well as long-term complications. Patients who develop severe radiation-induced brainstem injuries have a poor prognosis due to the lack of effective medical therapies. However, the relationship between brainstem injury and radiation volume dose is unknown. In this study, we found that radiation-induced brainstem injury was significantly associated with brainstem dose per unit volume. METHODS: A retrospective analysis was performed on a consecutive cohort of 327 patients with NPC receiving IMRT from May 2005 to December 2014. Dose-volume data and long-term outcome were analyzed. RESULTS: The median follow-up duration was 56 months (range, 3-141 months), and six with T4 and two with T3 patients had radiation-induced brainstem injuries. The 3-year and 5-year incidences were 2.2% and 2.8%, respectively. The latency period of brainstem injury ranged from 9 to 58 months, with a median period of 21 months. The Cox regression analysis showed that brainstem radiation toxicity was associated with the T4 stage, D2% of gross tumor volume of nasopharyngeal primary lesions and their direct extensions (GTVnx), Dmax (the maximum point dose), D1%, D0.1cc (the top dose delivered to a 0.1-ml volume), and D1cc (the top dose delivered to a 1-ml volume) of the brainstem (p < 0.05). Receiver operating characteristic (ROC) curves showed that GTVnx D2% and the Dmax, D1%, D0.1cc, and D1cc of the brainstem were significant predictors of brainstem injury. The area under the ROC curve for these five parameters was 0.724, 0.813, 0.818, 0.818, and 0.798, respectively (p < 0.001), and the cutoff points 77.26 Gy, 67.85 Gy, 60.13 Gy, 60.75 Gy, and 54.58 Gy, respectively, were deemed as the radiation dose limit. CONCLUSIONS: Radiotherapy-induced brainstem injury was uncommon in patients with NPC who received definitive IMRT. Multiple dose-volume data may be the dose tolerance of radiation-induced brainstem injury.


Asunto(s)
Tronco Encefálico/patología , Carcinoma/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Traumatismos por Radiación/etiología , Radioterapia de Intensidad Modulada/efectos adversos , Adulto , Tronco Encefálico/efectos de la radiación , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Carcinoma Nasofaríngeo , Pronóstico , Traumatismos por Radiación/patología , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos
18.
J Cancer ; 9(9): 1642-1651, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760803

RESUMEN

Background: This study aimed to compare concurrent chemoradiotherapy (CCRT) plus cetuximab (C) with CCRT alone in locoregionally advanced nasopharyngeal carcinoma(NPC). Methods: A total of 682 locoregionally advanced NPC patients who had undergone chemoradiotherapy with or without cetuximab were included. Propensity score-matching method was used to match patients. Progression-free survival (PFS), overall survival (OS), locoregional relapse-free survival (LRFS), and distant metastasis-free survival (DMFS) were compared between the two treatment arms. Results: After matching, 225 patients were identified for the analysis. Compared to CCRT, CCRT plus C was associated with significantly improved 3-year PFS (83.7% vs 71.9%, P = 0.036), LRFS (98.6% vs 90.2%, P = 0.034) but not OS (91.4% vs 85.4%, P = 0.117). Among patients with T4 and/or N3 category, CCRT plus C significantly prolonged 3-year PFS (81.0% vs 61.4%, P = 0.022) and increased 3-year OS (88.0% vs 77.9%, P = 0.086). No significant differences were observed between CCRT plus C and CCRT alone groups with regard to 3-year PFS, OS, LRFS and DMFS rates in stage III patients. Acute oral and oropharyngeal mucositis during radiotherapy were more common in the CCRT plus C than that in CCRT, but late toxicities were comparable. Conclusions: This study reveals that patients with locoregionally advanced NPC could benefit from the addition of cetuximab to CCRT, and this therapeutic gain mainly originated from T4 and/or N3 subgroup although suffering more acute moderate to severe toxicities.

19.
World J Surg Oncol ; 15(1): 216, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29202837

RESUMEN

BACKGROUND: The purpose of this case series is to investigate the relationship between splenic thickness (ST) and postoperative outcomes after hepatic resection in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) patients. METHODS: The clinical data of 320 patients with HBV-associated HCC who had undergone liver resection were retrospectively analyzed. The value of ST in predicting postoperative outcomes was evaluated. RESULTS: A total of 320 patients were enrolled in the study. An increase in ST was significantly associated with an increase in portal vein diameter (PVD), indocyanine green retention rate 15 min (ICG R15), and total bilirubin (TBIL); however, it was negatively correlated with platelet count (PLT). Post-hepatectomy liver failure (PHLF) occurred in 35 (10.9%) patients. Multivariate logistic regression analysis showed that ST was an independent predictor of morbidity and mortality after hepatectomy. Meanwhile, ST was associated with an almost sixfold increased risk for developing perioperative complications (OR 5.678; 95% CI 2.873 to 11.224; P < 0.001) and almost 13-fold increased risk for mortality after hepatectomy (OR 13.007; 95% CI 1.238 to 136.627; P = 0.033).The area under the receiver operating characteristic (ROC) curve (AUC) of ST for predicting the incidence of PHLF was 0.754 (95% confidence interval (CI) 0.667 to 0.841; P < 0.001), with a sensitivity of 57.1% and a specificity of 82.5%, which were significantly greater than those of the ICG R15 level (AUC 0.670; 95% CI 0.560 to 0.779; P < 0.001). The critical value of ST was 43.5 mm. CONCLUSIONS: ST, which is an easy, inexpensive, and routinely available perioperative marker, showed a favorable predictive value for postoperative outcomes in HBV-associated HCC patients.


Asunto(s)
Carcinoma Hepatocelular/cirugía , Fallo Hepático/epidemiología , Neoplasias Hepáticas/cirugía , Complicaciones Posoperatorias/epidemiología , Bazo/patología , Adulto , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/virología , Femenino , Hepatectomía/efectos adversos , Virus de la Hepatitis B/aislamiento & purificación , Humanos , Hígado/irrigación sanguínea , Hígado/diagnóstico por imagen , Hígado/cirugía , Hígado/virología , Fallo Hepático/etiología , Pruebas de Función Hepática , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/virología , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Vena Porta/diagnóstico por imagen , Complicaciones Posoperatorias/etiología , Periodo Posoperatorio , Valor Predictivo de las Pruebas , Pronóstico , Curva ROC , Estudios Retrospectivos , Factores de Riesgo , Bazo/diagnóstico por imagen
20.
Oncotarget ; 8(45): 79953-79963, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-29108377

RESUMEN

PURPOSE: This study aimed to compare the efficacy of induction-concurrent (IC-CCRT) with concurrent-adjuvant (CCRT-AC) chemotherapy in patients with locoregionally advanced nasopharyngeal carcinoma (LA-NPC) treated by intensity-modulated radiotherapy (IMRT). MATERIALS AND METHODS: Data on 834 patients with newly diagnosed, non-metastatic stage III-IVA (except T3N0) NPC receiving either IC-CCRT or CCRT-AC between July, 2004 and December, 2014 were retrospectively reviewed. Propensity score matching (PSM) method was adopted to balance prognostic factors and match patients. Survival outcomes of matched patients between IC-CCRT and CCRT-AC were compared. RESULTS: The median follow-up duration is 45.2 months (range, 1.07-145.4 months). Overall, 309 pairs were selected by PSM. Univariate analysis revealed the CCRT-AC group achieved significantly higher 3-year DFS (83.9% vs. 78.7 %; P = 0.014) and OS (87.6% vs. 87.0%; P = 0.031). Multivariate analysis also identified treatment group (IC-CCRT vs. CCRT-AC) as an independent prognostic factor for 3-year DFS (HR, 1.546; 95% CI, 1.113-2.149; P = 0.009) and OS (HR, 1.487; 95% CI, 1.035-2.136; P = 0.032). Subgroup analysis revealed IC-CCRT was a protective factor for DMFS (HR, 0.145; 95% CI, 0.043-0.488; P = 0.002) in stage III disease; however, it could adversely affected DFS (HR, 2.009; 95% CI, 1.316-3.065; P = 0.001), OS (HR, 1.671; 95% CI, 1.060-2.636; P = 0.027) and DMFS (HR, 1.986; 95% CI, 1.155-3.416; P = 0.013) in stage IVA disease. CONCLUSIONS: CCRT-AC may be a more effective treatment modality in patients with stage IVA NPC disease, while IC-CCRT was superior in stage III disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA