Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Neural Regen Res ; 20(6): 1613-1627, 2025 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38845225

RESUMEN

Some studies have confirmed the neuroprotective effect of remote ischemic conditioning against stroke. Although numerous animal researches have shown that the neuroprotective effect of remote ischemic conditioning may be related to neuroinflammation, cellular immunity, apoptosis, and autophagy, the exact underlying molecular mechanisms are unclear. This review summarizes the current status of different types of remote ischemic conditioning methods in animal and clinical studies and analyzes their commonalities and differences in neuroprotective mechanisms and signaling pathways. Remote ischemic conditioning has emerged as a potential therapeutic approach for improving stroke-induced brain injury owing to its simplicity, non-invasiveness, safety, and patient tolerability. Different forms of remote ischemic conditioning exhibit distinct intervention patterns, timing, and application range. Mechanistically, remote ischemic conditioning can exert neuroprotective effects by activating the Notch1/phosphatidylinositol 3-kinase/Akt signaling pathway, improving cerebral perfusion, suppressing neuroinflammation, inhibiting cell apoptosis, activating autophagy, and promoting neural regeneration. While remote ischemic conditioning has shown potential in improving stroke outcomes, its full clinical translation has not yet been achieved.

2.
Biomater Sci ; 12(19): 5115-5122, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39225616

RESUMEN

Virus-like nanoparticle vaccines can efficiently activate the humoral immune response by cross-linking B cell receptors with their surface multivalent antigen arrays. This structurally dependent mechanism makes it crucial to regulate and optimize structural parameters to enhance the efficacy of nanoparticle vaccines. In this study, we prepared nanoparticle vaccines with different aspect ratios by chemically modifying antigen proteins onto the surfaces of poly(amino acid) nanoparticles of various shapes (spherical, ellipsoidal, and rod-like). This allowed us to investigate the impact of structural anisotropy on the humoral immune activation efficacy of nanoparticle vaccines. Furthermore, the end-group molecules of poly(amino acid) materials possess aggregation-induced emission (AIE) properties, which facilitate monitoring the dynamics of nano-assemblies within the body. Results showed that rod-like nanoparticle vaccines (RLNVax) with a higher aspect ratio (AR = 5) exhibited greater lymph node draining efficiency and could elicit more effective B cell activation compared to conventional isotropic spherical nanoparticle vaccines. In a murine subcutaneous immunization model using ovalbumin (OVA) as a model antigen, RLNVax elicited antigen-specific antibody titers that were about 64 times and 4.6 times higher than those induced by free antigen proteins and spherical nanoparticle vaccines, respectively. Additionally, when combined with an aluminum adjuvant, antibody titers elicited by RLNVax were further enhanced by 4-fold. These findings indicate that the anisotropic rod-like structure is advantageous for improving the humoral immune activation efficacy of nanoparticle vaccines, providing significant insights for the design and optimization of next-generation nanoparticle vaccines.


Asunto(s)
Inmunidad Humoral , Nanopartículas , Animales , Inmunidad Humoral/efectos de los fármacos , Nanopartículas/química , Nanopartículas/administración & dosificación , Ratones , Femenino , Ovalbúmina/inmunología , Ovalbúmina/química , Ovalbúmina/administración & dosificación , Ratones Endogámicos BALB C , Linfocitos B/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/administración & dosificación , Nanovacunas
3.
Adv Sci (Weinh) ; 11(38): e2405935, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39116306

RESUMEN

Local immunotherapy represents a promising solution for preventing tumor recurrence and metastasis post tumor surgical resection by eliminating residue tumor cells as well as eliciting tumor-specific immune responses. Minimally invasive surgery has become a mainstream surgical method worldwide due to its advantages of aesthetics and rapid postoperative recovery. Unfortunately, the currently reported local immunotherapy strategies are mostly designed to be used after open laparotomy, which go against the current surgical philosophy of minimally invasive therapy and is not suitable for clinical translation. Aiming at this problem, a minimally invasive injectable gel (MIGel) is herein reported loaded with immunotherapeutic agents for gastric and liver cancer postoperative treatment. The MIGel is formed by crosslinking between oxidized dextran (ODEX) and 4-arm polyethylene glycol hydroxylamine (4-arm PEG-ONH2) through oxime bonds, which can be injected through a clinic-used minimally invasive drainage tube and adhered tightly to the tissue. The loaded oxaliplatin (OxP) and resiquimod (R848) can be released constantly over two weeks and resulted in over 75% cure rate in orthotopic mouse gastric and liver cancer model. Collectively, a concept of minimally invasive local immunotherapy is proposed and MIGel is designed for local intraperitoneal cancer immunotherapy through minimally invasive surgery, with good clinical translation potential.


Asunto(s)
Inmunoterapia , Neoplasias Hepáticas , Neoplasias Gástricas , Neoplasias Gástricas/terapia , Neoplasias Gástricas/inmunología , Animales , Inmunoterapia/métodos , Ratones , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/inmunología , Geles , Modelos Animales de Enfermedad , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Humanos , Oxaliplatino/administración & dosificación
4.
Redox Rep ; 29(1): 2377870, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39010730

RESUMEN

OBJECTIVES: To observe the CISD2 expression among PCOS patients and to explore its profound impact on the follicular microenvironment. Moreover, we want to elucidate the intricate mechanistic contribution of CISD2 to the onset and progression of PCOS. METHODS: Oxidase NOX2, mitophagy-related proteins, and CISD2 were detected by WB. The changes in mitochondrial structure and quantity were observed by transmission electron microscopy. Mitochondrial and lysosome colocalization was used to detect the changes of mitophagy. MDA kit, GSH and GSSG Assay kit and ROS probe were used to detect oxidative stress damage. RESULTS: We found that CISD2, mitophagy and oxidase in the GCs of PCOS patients were significantly increased. Testosterone stimulation leads to the increase of oxidase, mitophagy, and CISD2 in KGN cells. CISD2 inhibition promoted the increase of mitophagy, and the activation of mitochondria-lysosome binding, while alleviating the oxidative stress. CONCLUSIONS: Inhibition of CISD2 can improve the occurrence of oxidative stress by increasing the level of mitophagy, thus affecting the occurrence and development of PCOS diseases.


Asunto(s)
Mitofagia , Estrés Oxidativo , Síndrome del Ovario Poliquístico , Adulto , Femenino , Humanos , Microambiente Celular/fisiología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Mitofagia/fisiología , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología
5.
Reprod Biomed Online ; 49(3): 104078, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39024925

RESUMEN

RESEARCH QUESTION: Does hyperandrogenaemia affect the function of ovarian granulosa cells by activating ferroptosis, and could this process be regulated by endoplasmic reticulum stress? DESIGN: Levels of ferroptosis and endoplasmic reticulum stress in granulosa cells were detected in women with and without polycystic ovary syndrome (PCOS) undergoing IVF. Ferroptosis and endoplasmic reticulum stress levels of ovarian tissue and follicle development were detected in control mice and PCOS-like mice models, induced by dehydroepiandrosterone. An in-vitro PCOS model of KGN cells was constructed with testosterone and ferroptosis inhibitor Fer-1. Endoplasmic reticulum stress inhibitor, tauroursodeoxycholate (TUDCA), determined the potential mechanism associated with excessive induction of ferroptosis in granulosa cells related to PCOS, and levels of ferroptosis and endoplasmic reticulum stress were detected. RESULTS: Activation of ferroptosis and endoplasmic reticulum stress occurred in granulosa cells of women with PCOS and the varies of PCOS-like mice. The findings in KGN cells demonstrated that testosterone treatment results in elevation of oxidative stress levels, particularly lipid peroxidation, and intracellular iron accumulation in granulosa cells. The expression of genes and proteins associated with factors related to ferroptosis, mitochondrial membrane potential and ultrastructure showed that testosterone activated ferroptosis, whereas Fer-1 reversed these alterations. During in-vitro experiments, activation of endoplasmic reticulum stress induced by testosterone treatment was detected in granulosa cells. In granulosa cells, TUDCA, an inhibitor of endoplasmic reticulum stress, significantly mitigated testosterone-induced ferroptosis. CONCLUSIONS: Ferroptosis plays a part in reproductive injury mediated by hyperandrogens associated with PCOS, and may be regulated by endoplasmic reticulum stress.


Asunto(s)
Estrés del Retículo Endoplásmico , Ferroptosis , Células de la Granulosa , Hiperandrogenismo , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/metabolismo , Femenino , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células de la Granulosa/metabolismo , Animales , Hiperandrogenismo/metabolismo , Hiperandrogenismo/complicaciones , Ratones , Humanos , Adulto , Folículo Ovárico/metabolismo , Testosterona/sangre
6.
Adv Healthc Mater ; 13(23): e2400886, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38824421

RESUMEN

Vaccine is the most important way for fighting against infection diseases. However, multiple injections and unsatisfied immune responses are the main obstacles for current vaccine application. Herein, a dynamic covalent hydrogel (DCH) is used as a single-dose vaccine adjuvant for eliciting robust and sustained humoral immunity. By adjusting the mass ratio of the DCH gel, 10-30 d constant release of the loaded recombinant protein antigens is successfully realized, and it is proved that sustained release of antigens can significantly improve the vaccine efficacy. When loading SARS-CoV-2 RBD (Wuhan and Omicron BA.1 strains) antigens into this DCH gel, an over 32 000 times and 8000 times improvement is observed in antigen-specific antibody titers compared to conventional Aluminum adjuvanted vaccines. The universality of this DCH gel adjuvant is confirmed in a Nipah G antigen test as well as a H1N1 influenza virus antigen test, with much improved protection of C57BL/6 mice against H1N1 virus infection than conventional Aluminum adjuvanted vaccines. This sustainably released, single-dose DCH gel adjuvant provides a new promising option for designing next-generation infection vaccines.


Asunto(s)
Hidrogeles , Inmunidad Humoral , Subtipo H1N1 del Virus de la Influenza A , Ratones Endogámicos C57BL , Animales , Hidrogeles/química , Ratones , Inmunidad Humoral/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/inmunología , SARS-CoV-2/inmunología , Antígenos Virales/inmunología , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes de Vacunas/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , COVID-19/prevención & control , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/administración & dosificación , Femenino , Humanos , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/química , Vacunas contra la Influenza/administración & dosificación
7.
J Mater Chem B ; 12(24): 5848-5860, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38775048

RESUMEN

Nanoparticles have been regarded as a promising vaccine adjuvant due to their innate immune potentiation and enhanced antigen transport. However, the inefficient infiltration into the lymph node (LN) paracortex of nanoparticles caused by subcapsular sinus (SCS) obstruction is the main challenge in further improvement of nanovaccine immune efficacy. Herein, we propose to overcome paracortex penetration by using nanovaccine to spontaneously and continuously release antigens after retention in the SCS. In detail, we utilized a spontaneous retro-Diels-Alder (r-D-A) reaction linker to connect poly{(2-methyl-2-oxazoline)80-co-[(2-butyl-2-oxazoline)15-r-(2-thioethyl-2-oxazoline)8]} (PMBOxSH) and peptides for the peptide nanovaccine construction. The r-D-A reaction linker can spontaneously break over time, allowing the nanovaccine to release free antigens and adjuvants upon reaching the LN, thereby facilitating the entry of released antigens and adjuvants into the interior of the LNs. We showed that the efficacy of the peptide nanovaccine constructed using this dynamic linker could be significantly improved, thus greatly enhancing the tumor inhibition efficacy in the B16-OVA model. This dynamic-covalent-chemistry-based vaccine strategy may inspire designing more efficient therapeutic vaccines, especially those that require eliciting high-amount T cell responses.


Asunto(s)
Inmunidad Celular , Ganglios Linfáticos , Nanopartículas , Péptidos , Animales , Ratones , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Nanopartículas/química , Péptidos/química , Péptidos/farmacología , Inmunidad Celular/efectos de los fármacos , Ratones Endogámicos C57BL , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/administración & dosificación , Reacción de Cicloadición , Femenino , Tamaño de la Partícula , Nanovacunas
8.
J Control Release ; 370: 528-542, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705520

RESUMEN

Reversing the aggravated immunosuppression hence overgrowth of colorectal cancer (CRC) caused by the gut inflammation and microbiota dysbiosis is pivotal for effective CRC therapy and metastasis inhibition. However, the low delivery efficiency and severe dose-limiting off-target toxicities caused by unsatisfied drug delivery systems remain the major obstacles in precisely modulating gut inflammation and microbiota in CRC therapy. Herein, a multifunctional oral dextran-aspirin nanomedicine (P3C-Asp) was utilized for oral treatment of primary CRC, as it could release salicylic acid (SA) while scavenging reactive oxygen species (ROS) and held great potential in modulating gut microbiota with prebiotic (dextran). Oral P3C-Asp retained in CRC tissues for over 12 h and significantly increased SA accumulation in CRC tissues over free aspirin (10.8-fold at 24 h). The enhanced SA accumulation and ROS scavenging of P3C-Asp cooperatively induced more potent inflammation relief over free aspirin, characterized as lower level of cyclooxygenase-2 and immunosuppressive cytokines. Remarkably, P3C-Asp promoted the microbiota homeostasis and notably increased the relative abundance of strengthening systemic anti-cancer immune response associated microbiota, especially lactobacillus and Akkermansia to 6.66- and 103- fold over the control group. Additionally, a demonstrable reduction in pathogens associated microbiota (among 96% to 79%) including Bacteroides could be detected. In line with our findings, inflammation relief along with enhanced abundance of lactobacillus was positively correlated with CRC inhibition. In primary CRC model, P3C-Asp achieved 2.1-fold tumor suppression rate over free aspirin, with an overall tumor suppression rate of 85%. Moreover, P3C-Asp cooperated with αPD-L1 further reduced the tumor weight of each mouse and extended the median survival of mice by 29 days over αPD-L1 alone. This study unravels the synergistic effect of gut inflammation and microbiota modulation in primary CRC treatment, and unlocks an unconventional route for immune regulation in TME with oral nanomedicine.


Asunto(s)
Aspirina , Neoplasias Colorrectales , Dextranos , Microbioma Gastrointestinal , Homeostasis , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Aspirina/administración & dosificación , Aspirina/uso terapéutico , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Homeostasis/efectos de los fármacos , Administración Oral , Dextranos/administración & dosificación , Dextranos/química , Nanomedicina , Ratones Endogámicos BALB C , Inflamación/tratamiento farmacológico , Masculino , Ratones , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/uso terapéutico , Nanopartículas/administración & dosificación , Línea Celular Tumoral , Femenino
9.
Sci Bull (Beijing) ; 69(7): 922-932, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331707

RESUMEN

Neoantigen cancer vaccines have been envisioned as one of the most promising means for cancer therapies. However, identifying neoantigens for tumor types with low tumor mutation burdens continues to limit the effectiveness of neoantigen vaccines. Herein, we proposed a "hit-and-run" vaccine strategy which primes T cells to attack tumor cells decorated with exogenous "neo-antigens". This vaccine strategy utilizes a peptide nanovaccine to elicit antigen-specific T cell responses after tumor-specific decoration with a nanocarrier containing the same peptide antigens. We demonstrated that a poly(2-oxazoline)s (POx) conjugated with OVA257-264 peptide through a matrix metalloprotease 2 (MMP-2) sensitive linker could efficiently and selectively decorate tumor cells with OVA peptides in vivo. Then, a POx-based nanovaccine containing OVA257-264 peptides to elicit OVA-specific T cell responses was designed. In combination with this hit-and-run vaccine system, an effective vaccine therapy was demonstrated across tumor types even without OVA antigen expression. This approach provides a promising and uniform vaccine strategy against tumors with a low tumor mutation burden.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Epítopos , Antígenos de Neoplasias , Neoplasias/terapia , Péptidos
10.
Transl Stroke Res ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38356020

RESUMEN

The inflammatory response following subarachnoid hemorrhage (SAH) may lead to Early Brain Injury and subsequently contribute to poor prognosis such as cognitive impairment in patients. Currently, there is a lack of effective strategies for SAH to ameliorate inflammation and improve cognitive impairment in clinical. This study aims to examine the inhibitory impact of remote ischemic post-conditioning (RIPostC) on the body's inflammatory response by regulating Th17/Treg cell homeostasis after SAH. The ultimate goal is to search for potential early treatment targets for SAH. The rat SAH models were made by intravascular puncture of the internal carotid artery. The intervention of RIPostC was administered for three consecutive days immediately after successful modeling. Behavioral experiments including the Morris water maze and Y-maze tests were conducted to assess cognitive functions such as spatial memory, working memory, and learning abilities 2 weeks after successful modeling. The ratio of Th17 cells and Treg cells in the blood was detected using flow cytometry. Immunofluorescence was used to observe the infiltration of neutrophils into the brain. Signal transducers and activators of transcription 5 (STAT5) and signal transducers and activators of transcription 3 (STAT3) phosphorylation levels, receptor-related orphan receptor gamma-t (RORγt), and forkhead box protein P3 (Foxp3) levels were detected by Western blot. The levels of anti-inflammatory factors (IL-2, IL-10, IL-5, etc.) and pro-inflammatory factors (IL-6, IL-17, IL-18, TNF-α, IL-14, etc.) in blood were detected using Luminex Liquid Suspension Chip Assay. RIPostC significantly improved the cognitive impairment caused by SAH in rats. The results showed that infiltration of Th17 cells and neutrophils into brain tissue increased after SAH, leading to the release of pro-inflammatory factors (IL-6, IL-17, IL-18, and TNF-α). This response can be inhibited by RIPostC. Additionally, RIPostC facilitates the transfer of Treg from blood to the brain and triggers the release of anti-inflammatory (IL-2, IL-10, and IL-5) factors to suppress the inflammation following SAH. Finally, it was found that RIPostC increased the phosphorylation of STAT5 while decreasing the phosphorylation of STAT3. RIPostC reduces inflammation after SAH by partially balancing Th17/Treg cell homeostasis, which may be related to downregulation of STAT3 and upregulation of STAT5 phosphorylation, which ultimately alleviates cognitive impairment in rats. Targeting Th17/Treg cell homeostasis may be a promising strategy for early SAH treatment.

11.
Natl Sci Rev ; 11(3): nwad310, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38312378

RESUMEN

Virus-like particle (VLP) vaccines had shown great potential during the COVID-19 pandemic, and was thought to be the next generation of antiviral vaccine technology due to viromimetic structures. However, the time-consuming and complicated processes in establishing a current recombinant-protein-based VLP vaccine has limited its quick launch to the out-bursting pandemic. To simplify and optimize VLP vaccine design, we herein report a kind of viromimetic polymer nanoparticle vaccine (VPNVax), with subunit receptor-binding domain (RBD) proteins conjugated to the surface of polyethylene glycol-b-polylactic acid (PEG-b-PLA) nanoparticles for vaccination against SARS-CoV-2. The preparation of VPNVax based on synthetic polymer particle and chemical post-conjugation makes it possible to rapidly replace the antigens and construct matched vaccines at the emergence of different viruses. Using this modular preparation system, we identified that VPNVax with surface protein coverage of 20%-25% had the best immunostimulatory activity, which could keep high levels of specific antibody titers over 5 months and induce virus neutralizing activity when combined with an aluminum adjuvant. Moreover, the polymer nano-vectors could be armed with more immune-adjuvant functions by loading immunostimulant agents or chemical chirality design. This VPNVax platform provides a novel kind of rapidly producing and efficient vaccine against different variants of SARS-CoV-2 as well as other viral pandemics.

12.
ACS Nano ; 18(4): 3087-3100, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38235966

RESUMEN

Breast cancer is the most commonly diagnosed cancer, and surgical resection is the first choice for its treatment. With the development of operation techniques, surgical treatment for breast cancer is evolving toward minimally invasive and breast-conserving approaches. However, breast-conserving surgery is prone to an increased risk of cancer recurrence and is becoming a key challenge that needs to be solved. In this study, we introduce a one-shot injectable nano-in-gel vaccine (NIGel-Vax) for postoperative breast cancer therapy. The NIGel-Vax was constructed by mixing protein antigens with PEI-4BImi-Man adjuvant and then encapsulated in a hydrogel made with oxidized dextran (ODEX) and 4-arm PEG-ONH2. Using 4T1 tumor-extracted proteins as antigen, the NIGel-Vax achieved a 92% tumor suppression rate and a 33% cure rate as a postoperative therapy in the 4T1 tumor model. Using the tumor-associated antigen trophoblast cell-surface antigen 2 (TROP2) protein as the antigen, NIGel-Vax achieved a 96% tumor suppression rate and a 50% cure rate in triple-negative breast cancer (TNBC) models. This design provides an encouraging approach for breast cancer postoperative management.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Vacunas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/cirugía , Nanovacunas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Mastectomía Segmentaria , Hidrogeles/uso terapéutico , Línea Celular Tumoral
13.
J Ovarian Res ; 17(1): 14, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216976

RESUMEN

BACKGROUND: For women of childbearing age, the biggest problem caused by polycystic ovary syndrome (PCOS) is infertility, which is mainly caused by anovulation, abnormal follicular development, proliferation of small antral follicles, and cystic follicles. The mechanism underlying its occurrence is not clear. The abnormal proliferation and development of follicles in PCOS patients is a complex process, which is affected by many factors. The objective of this study was to investigate the relationship between the Hippo pathway and follicular development in PCOS, and to further explore this relationship by using the YAP inhibitor verteporfin (VP). METHOD: 30 3-week-old BALB/C female rats were randomly divided into control group (n = 10), DHEA group (n = 10) and DHEA + VP group (n = 10). The morphology of ovary and the degree of follicular development were observed by HE staining, and the expression and location of AMH in ovarian follicles were observed by immunofluorescence. The ovarian reserve function index AMH, cell proliferation index PCNA and the ratio of Hippo pathway related proteins MST, LATS, YAP, P-YAP and P-YAP/YAP were detected by Western blot. RESULTS: After dividing 30 3-week-old female mice into control, dehydroepiandrosterone (DHEA; model of PCOS), and DHEA + VP groups, we found that the number of small follicles increased in the DHEA group compared to the control group. Additionally, in the DHEA group compared to the control group, anti-müllerian hormone (AMH; ovarian reserve index) increased, proliferating cell nuclear antigen (PCNA; cell proliferation index) decreased, and upstream (MST and LATS) and downstream (YAP and p-YAP) proteins in the Hippo pathway increased, though the p-YAP/YAP ratio decreased. VP ameliorated the increases in AMH, MST, LATS, YAP and p-YAP, but did not ameliorate the decrease in the p-YAP/YAP ratio. CONCLUSIONS: This study indicates that the increased small follicles in the ovaries and changes in ovarian reserve and cell proliferation may be closely related to Hippo pathway activation. This suggests that the Hippo pathway may be an important pathway affecting the proliferation and development of follicles and the occurrence of PCOS.


Asunto(s)
Síndrome del Ovario Poliquístico , Humanos , Femenino , Ratas , Animales , Ratones , Síndrome del Ovario Poliquístico/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Vía de Señalización Hippo , Ratones Endogámicos BALB C , Hormona Antimülleriana/metabolismo , Deshidroepiandrosterona/farmacología
14.
Int Immunopharmacol ; 125(Pt A): 111141, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37918087

RESUMEN

Hyperandrogenemia and persistent chronic inflammation, two main striking features of polycystic ovary syndrome (PCOS), have been proven involved in follicular dysgenesis in PCOS. However, the association between hyperandrogenism and inflammation activation in PCOS is not fully understood. Excess testosterone(T) induces inflammation and pyroptosis activation in a mouse model of PCOS, leading to ovarian dysfunction and fibrosis. Excessive endoplasmic reticulum (ER) stress is present in ovarian granulosa cells (GCs), testosterone-induced PCOS mouse and cellular models. This study found higher levels of interleukin (IL)-1ß, IL-8, IL-17, and IL-18 in the follicular fluid of PCOS patients with hyperandrogenemia undergoing IVF treatment. In addition, pyroptosis in GCs was demonstrated, which was significantly elevated in PCOS patients. To clarify the association of hyperandrogenism, inflammation, and pyroptosis activation in PCOS, dehydroepiandrosterone(DHEA)-treated mouse PCOS model and T-treated KGN cell line were explored for PCOS mechanism. Markers of inflammatory activation and pyroptosis were significantly increased after DHEA treatment in mice and T treatment in KGN cells. In addition, ER stress sensor proteins were increased simultaneously. However, suppression of inflammation by genipin(GP) led to decreased pyroptosis in KGN cells but no variation in ER stress sensor proteins. In contrast, when treated with tauroursodeoxycholic acid(TUDCA) to attenuate ER stress, the markers of inflammatory factors were significantly reduced, accompanied by a reduction in pyroptosis. Our results suggest that persistent hyperandrogenemia of PCOS promotes local inflammatory activation of the ovary, and the imbalanced inflammatory microenvironment leads to pyroptosis of GCs, which is mediated by ER stress activation.


Asunto(s)
Hiperandrogenismo , Síndrome del Ovario Poliquístico , Humanos , Femenino , Ratones , Animales , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología , Piroptosis , Testosterona , Inflamación , Deshidroepiandrosterona , Microambiente Tumoral
15.
Opt Express ; 31(9): 14149-14158, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37157285

RESUMEN

Quantum metrology promises a great enhancement in measurement precision that beyond the possibilities of classical physics. We demonstrate a Hong-Ou-Mandel sensor that acts as a photonic frequency inclinometer for ultrasensitive tilt angle measurement within a wide range of tasks, ranging from the determination of mechanical tilt angles, the tracking of rotation/tilt dynamics of light-sensitive biological and chemical materials, or in enhancing the performance of optical gyroscope. The estimation theory shows that both a wider single-photon frequency bandwidth and a larger difference frequency of color-entangled states can increase its achievable resolution and sensitivity. Building on the Fisher information analysis, the photonic frequency inclinometer can adaptively determine the optimum sensing point even in the presence of experimental nonidealities.

16.
ACS Biomater Sci Eng ; 9(7): 4108-4116, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-35653749

RESUMEN

OX40 (CD134, TNFRSF4) is a member of the tumor necrosis factor receptor superfamily that can be activated by its cognate ligand OX40L (CD252, TNFSF4) and functions as a pair of T cell costimulatory molecules. The interaction between OX40 and OX40L (OX40/OX40L) plays a critical role in regulating antitumor immunity, including promoting effector T cells expansion and survival, blocking natural regulatory T cells (Treg) activity, and antagonizing inducible Treg generation. However, current OX40 agonists including anti-OX40 monoclonal antibodies (aOX40) have serious side effects after systemic administration, which limits their clinical success and application. Herein, we propose a strategy to reprogram tumor cells into OX40L-expressing "artificial" antigen-presenting cells (APCs) by OX40L plasmid-loaded nanoparticles for boosting antitumor immunity in situ. A novel gene transfection carrier was prepared by a modular hierarchical assembly method, which could efficiently transfect various tumor cells and express OX40L proteins on their surface. These surface-decorated OX40L proteins were proved to stimulate T cell proliferation in vitro while stimulating strong antitumor immune responses in vivo. Importantly, this in situ reprogramming strategy did not induce any toxicity as observed in aOX40 treatment, thus providing a novel method for immune checkpoint stimulator application.


Asunto(s)
Neoplasias , Ligando OX40 , Humanos , Ligando OX40/genética , Ligando OX40/metabolismo , Linfocitos T Reguladores/metabolismo , Activación de Linfocitos , Neoplasias/tratamiento farmacológico
17.
Biomaterials ; 284: 121489, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35364489

RESUMEN

Using nanotechnology for cancer vaccine design holds great promise because of the intrinsic feature of nanoparticles in being captured by antigen-presenting cells (APCs). However, there are still obstacles in current nanovaccine systems in achieving efficient tumor therapeutic effects, which could partially be attributed to the unsatisfactory vaccine carrier design. Herein, we report a mannan-decorated pathogen-like polymeric nanoparticle as a protein vaccine carrier for eliciting robust anticancer immunity. This nanovaccine was constructed as a core-shell structure with mannan as the shell, polylactic acid-polyethylenimine (PLA-PEI) assembled nanoparticle as the core, and protein antigens and Toll-like receptor 9 (TLR9) agonist CpG absorbed onto the PLA-PEI core via electrostatic interactions. Compared to other hydrophilic materials, mannan decoration could greatly enhance the lymph node draining ability of the nanovaccine and promote the capturing by the CD8+ dendritic cells (DCs) in the lymph node, while PLA-PEI as the inner core could enhance antigen endosome escape thus promoting the antigen cross-presentation. In addition, mannan itself as a TLR4 agonist could synergize with CpG for maximally activating the DCs. Excitingly, we observed in several murine tumor models that using this nanovaccine alone could elicit robust immune response in vivo and result in superior anti-tumor effects with 50% of mice completely cured. This study strongly evidenced that mannan decoration and a rationally designed nanovaccine system could be quite robust in tumor vaccine therapy.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Adyuvantes Inmunológicos/química , Animales , Células Dendríticas , Inmunoterapia , Mananos , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Poliésteres/uso terapéutico , Polímeros/uso terapéutico
18.
Adv Mater ; 34(10): e2109254, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34984753

RESUMEN

In recent years, significant evolutions have been made in applying nanotechnologies for prophylactic and therapeutic cancer vaccine design. However, the clinical translation of nanovaccines is still limited owing to their complicated compositions and difficulties in the spatiotemporal coordination of antigen-presenting cell activation and antigen cross-presentation. Herein, a minimalist binary nanovaccine (BiVax) is designed that integrates innate stimulating activity into the carrier to elicit robust antitumor immunity. The authors started by making a series of azole molecules end-capped polyethylenimine (PEI-M), and were surprised to find that over 60% of the PEI-M polymers have innate stimulating activity via activation of the stimulator of interferon genes pathway. PEI-4BImi, a PEI-M obtained from a series of polymers, elicits robust antitumor immune responses when used as a subcutaneously injected nanovaccine by simply mixing with ovalbumin antigens, and this BiVax system performs much better than the traditional ternary vaccine system, as well as, commercialized aluminum-containing adjuvants. This system also enables the fast preparation of personalized BiVax by compositing PEI-4BImi with autologous tumor cell membrane protein antigens, and a 60% postoperative cure rate is observed when combined with immune checkpoint inhibitors.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Animales , Inmunoterapia , Ratones , Ratones Endogámicos C57BL , Neoplasias/terapia
19.
Adv Healthc Mater ; 10(20): e2100862, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34347370

RESUMEN

Surgery remains the most preferred treatment options for colorectal cancer (CRC). Paradoxically, local recurrence and distant metastasis are usually accelerated postsurgery as a consequence of local and systemic immunosuppression caused by surgery. Therefore, modulating tumor postoperative immune microenvironment and activating systemic antitumor immunity are necessary supplementaries for CRC therapy. Here, an in-situ-sprayed immunotherapeutic gel loaded with anti-OX40 antibody (iSGels@aOX40) is reported for CRC postsurgical treatment. The iSGel is formed instantly after spraying with strong adhesion ability via crosslinking between tannic acid (TA) and poly(l-glutamic acid)-g-methoxy poly(ethylene glycol)/phenyl boronic acid (PLG-g-mPEG/PBA). TA not only serves as one component of the iSGel but also relieves the postsurgical immunosuppressive microenvironment by inhibiting the activity of cyclo-oxygenase-2 (COX-2). The aOX40 serves as an immune agonistic antibody and is released from the iSGel in a constant manner lasting for over 20 days. In a subcutaneous murine CRC model, the iSGels@aOX40 results in complete inhibition on tumor recurrence. In addition, the cured mice show resistance to tumor re-challenge, suggesting that immune memory effects are established after the iSGels@aOX40 treatment. In an orthotopic CRC peritoneal metastatic model, the iSGels@aOX40 also remarkably inhibits the growth of the abdominal metastatic tumors, suggesting great potential for clinical CRC therapy.


Asunto(s)
Neoplasias Colorrectales , Microambiente Tumoral , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Inmunoterapia , Ratones
20.
Adv Mater ; 33(7): e2007293, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33448050

RESUMEN

Using nanotechnology for improving the immunotherapy efficiency represents a major research interest in recent years. However, there are paradoxes and obstacles in using a single nanoparticle to fulfill all the requirements in the complicated immune activation processes. Herein, a supramolecular assembled programmable immune activation nanomedicine (PIAN) for sequentially finishing multiple steps after intravenous injection and eliciting robust antitumor immunity in situ is reported. The programmable nanomedicine is constructed by supramolecular assembly via host-guest interactions between poly-[(N-2-hydroxyethyl)-aspartamide]-Pt(IV)/ß-cyclodextrin (PPCD), CpG/polyamidoamine-thioketal-adamantane (CpG/PAMAM-TK-Ad), and methoxy poly(ethylene glycol)-thioketal-adamantane (mPEG-TK-Ad). After intravenous injection and accumulation at the tumor site, the high level of reactive oxygen species in the tumor microenvironment promotes PIAN dissociation and the release of PPCD (mediating tumor cell killing and antigen release) and CpG/PAMAM (mediating antigen capturing and transferring to the tumor-draining lymph nodes). This results in antigen-presenting cell activation, antigen presentation, and robust antitumor immune responses. In combination with anti-PD-L1 antibody, the PIAN cures 40% of mice in a colorectal cancer model. This PIAN provides a new framework for designing programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Vacunas contra el Cáncer/química , Neoplasias Colorrectales/inmunología , Dendrímeros/química , Animales , Células Presentadoras de Antígenos , Antineoplásicos/farmacología , Vacunas contra el Cáncer/farmacología , Línea Celular Tumoral , Humanos , Inmunoterapia , Interleucina-6/metabolismo , Ratones , Neoplasias Experimentales , Polietilenglicoles/química , Microambiente Tumoral , Factor de Necrosis Tumoral alfa/metabolismo , beta-Ciclodextrinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA