Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nutrients ; 16(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892647

RESUMEN

During weaning, piglets are susceptible to intestinal inflammation and impairment in barrier function. Dietary fiber (DF) plays an active role in alleviating weaning stress in piglets. However, the effects of different sources of dietary fiber on the performance of weaned piglets are inconsistent, and the mechanisms through which they affect intestinal health need to be explored. Therefore, in this study, sixty weaned piglets were randomly divided into three treatment groups: basal diet (control, CON), beet pulp (BP), and alfalfa meal (AM) according to the feed formulation for a 28-day trial. The results showed that both AM and BP groups significantly reduced diarrhea rate and serum inflammatory factors (IL-1ß and TNF-α) and increased antioxidant markers (T-AOC and SOD), in addition to decreasing serum MDA and ROS concentrations in the AM group. At the same time, piglets in the AM group showed a significant reduction in serum intestinal permeability indices (LPS and DAO) and a substantial increase in serum immunoglobulin levels (IgA, IgG, and IgM) and expression of intestinal barrier-associated genes (Claudin1, Occludin, ZO-1, and MUC1), which resulted in an improved growth performance. Interestingly, the effect of DF on intestinal inflammation and barrier function can be attributed to its modulation of gut microbes. Fiber-degrading bacteria enriched in the AM group (Christensenellaceae_R-7_group, Pediococcus and Weissella) inhibited the production of TLR4- through the promotion of SCFAs (especially butyrate). MyD88-NF-κB signaling pathway activation reduces intestinal inflammation and repairs intestinal barrier function. In conclusion, it may provide some theoretical support and rationale for AM to alleviate weaning stress and improve early intestinal dysfunction, which may have implications for human infants.


Asunto(s)
Butiratos , Fibras de la Dieta , Transducción de Señal , Destete , Animales , Alimentación Animal , Fibras de la Dieta/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico , Porcinos , Receptor Toll-Like 4/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 314, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683435

RESUMEN

The importance of dietary fiber (DF) in animal diets is increasing with the advancement of nutritional research. DF is fermented by gut microbiota to produce metabolites, which are important in improving intestinal health. This review is a systematic review of DF in pig nutrition using in vitro and in vivo models. The fermentation characteristics of DF and the metabolic mechanisms of its metabolites were summarized in an in vitro model, and it was pointed out that SCFAs and gases are the important metabolites connecting DF, gut microbiota, and intestinal health, and they play a key role in intestinal health. At the same time, some information about host-microbe interactions could have been improved through traditional animal in vivo models, and the most direct feedback on nutrients was generated, confirming the beneficial effects of DF on sow reproductive performance, piglet intestinal health, and growing pork quality. Finally, the advantages and disadvantages of different fermentation models were compared. In future studies, it is necessary to flexibly combine in vivo and in vitro fermentation models to profoundly investigate the mechanism of DF on the organism in order to promote the development of precision nutrition tools and to provide a scientific basis for the in-depth and rational utilization of DF in animal husbandry. KEY POINTS: • The fermentation characteristics of dietary fiber in vitro models were reviewed. • Metabolic pathways of metabolites and their roles in the intestine were reviewed. • The role of dietary fiber in pigs at different stages was reviewed.


Asunto(s)
Alimentación Animal , Fibras de la Dieta , Fermentación , Microbioma Gastrointestinal , Animales , Fibras de la Dieta/metabolismo , Porcinos , Microbioma Gastrointestinal/fisiología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Ácidos Grasos Volátiles/metabolismo
3.
Int J Biol Macromol ; 261(Pt 1): 129696, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280701

RESUMEN

Infancy is a critical period in the maturation of the gut microbiota and a phase of susceptibility to gut microbiota dysbiosis. Early disturbances in the gut microbiota can have long-lasting effects on host physiology, including intestinal injury and diarrhea. Fecal microbiota transplantation (FMT) can remodel gut microbiota and may be an effective way to treat infant diarrhea. However, limited research has been conducted on the mechanisms of infant diarrhea and the regulation of gut microbiota balance through FMT, primarily due to ethical challenges in testing on human infants. Our study demonstrated that elevated Lipopolysaccharides (LPS) levels in piglets with diarrhea were associated with colon microbiota dysbiosis induced by early weaning. Additionally, LPS upregulated NLRP3 levels by activating TLR4 and inducing ROS production, resulting in pyroptosis, disruption of the intestinal barrier, bacterial translocation, and subsequent inflammation, ultimately leading to diarrhea in piglets. Through microbiota regulation, FMT modulated ß-PBD-2 secretion in the colon by increasing butyric acid levels. This modulation alleviated gut microbiota dysbiosis, reduced LPS levels, attenuated oxidative stress and pyroptosis, inhibited the inflammatory response, maintained the integrity of the intestinal barrier, and ultimately reduced diarrhea in piglets caused by colitis. These findings present a novel perspective on the pathogenesis, pathophysiology, prevention, and treatment of diarrhea diseases, underscoring the significance of the interaction between FMT and the gut microbiota as a critical strategy for treating diarrhea and intestinal diseases in infants and farm animals.


Asunto(s)
Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Lactante , Humanos , Animales , Porcinos , Trasplante de Microbiota Fecal/efectos adversos , Trasplante de Microbiota Fecal/métodos , Lipopolisacáridos , Microbioma Gastrointestinal/fisiología , Disbiosis/microbiología , Piroptosis , Diarrea/microbiología , Estrés Oxidativo
4.
Food Chem X ; 19: 100815, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780297

RESUMEN

The effects of alfalfa leaf meal (ALM) on the meat quality of finishing pigs are largely unknown. Here, we investigated the effects of ALM diet on meat quality by replacing 0%, 25%, 50%, and 75% of soybean meal in the diet of finishing pigs, respectively. The findings showed that 25% ALM diet increased the IMF, cooked meat rate, a* and antioxidant capacity of longissimus dorsi (LD), improved amino acid composition, increased MUFA content, and increased LD lipid synthesis and mRNA expression of antioxidation-related genes. At the same time, ALM diet altered serum lipid metabolism (TG, FFA). Correlation analysis showed that antioxidant capacity was positively correlated with meat quality. In addition, metabolomic analysis of LD showed that the main metabolites of 25% ALM diet altered stachydrine and l-carnitine were associated with meat quality and antioxidant capacity. In conclusion, ALM replacing 25% soybean meal diet can improve the meat quality of pigs.

5.
Front Vet Sci ; 9: 1025942, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406067

RESUMEN

As one kind of high-quality feed with rich nutrients, including high quality protein and amino acids, dietary fiber, enriched vitamins and mineral elements and bioactive molecules, alfalfa has been widely used in the production of ruminant livestock. As the understanding of alfalfa becomes more and more comprehensive, it is found that the high-quality nutrients in alfalfa could have positive effects on pigs. An increasing number of researches have shown that supplementing dietary alfalfa to the diet of gestating sows reduced constipation, alleviated abnormal behavior, improved satiety and reproductive performance; supplementing dietary alfalfa to the diet of piglets improved growth performance and intestinal barrier function, reduced intestinal inflammatory response and diarrhea; supplementing dietary alfalfa to the diet of growing-fattening pigs improved production performance and pork quality. Moreover, the mechanisms by which various nutrients of alfalfa exert their beneficial effects on pigs mainly including dietary fiber stimulating intestinal peristalsis, enhancing the activity of digestive enzymes, and promoting the colonization of beneficial bacteria in the intestinal tract through fermentation in the intestine, producing short-chain fatty acids and thus improving intestinal health; high quality protein and amino acids are beneficial to improve animal health condition; rich vitamins and mineral elements play an important role in various physiological functions and growth and development of the body; and bioactive molecules can improve the antioxidant and anti-inflammatory level. Therefore, alfalfa could be used as pig feed ingredient to alleviate various problems in the pig industry and to improve pig production performance. In this review, we detail the current application of alfalfa in pigs and discuss the potential mechanisms involved in how alfalfa improves growth and reproductive performance, pork quality, and intestinal health of the animals, thus laying the foundation for the increased application of high-quality forage in pig production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA