Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Adv ; 10(5): eadj4060, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38295176

RESUMEN

Since the seminal work on MoS2, photoexcitation in atomically thin transition metal dichalcogenides (TMDCs) has been assumed to result in excitons, with binding energies order of magnitude larger than thermal energy at room temperature. Here, we reexamine this foundational assumption and show that photoexcitation of TMDC monolayers can result in a substantial population of free charges. Performing ultrafast terahertz spectroscopy on large-area, single-crystal TMDC monolayers, we find that up to ~10% of excitons spontaneously dissociate into charge carriers with lifetimes exceeding 0.2 ns. Scanning tunneling microscopy reveals that photocarrier generation is intimately related to mid-gap defects, likely via trap-mediated Auger scattering. Only in state-of-the-art quality monolayers, with mid-gap trap densities as low as 109 cm-2, does intrinsic exciton physics start to dominate the terahertz response. Our findings reveal the necessity of knowing the defect density in understanding photophysics of TMDCs.

2.
Sci Adv ; 9(21): eadg3856, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37224256

RESUMEN

Lead halide perovskites (LHPs) have emerged as an excellent class of semiconductors for next-generation solar cells and optoelectronic devices. Tailoring physical properties by fine-tuning the lattice structures has been explored in these materials by chemical composition or morphology. Nevertheless, its dynamic counterpart, phonon-driven ultrafast material control, as contemporarily harnessed for oxide perovskites, has not yet been established. Here, we use intense THz electric fields to obtain direct lattice control via nonlinear excitation of coherent octahedral twist modes in hybrid CH3NH3PbBr3 and all-inorganic CsPbBr3 perovskites. These Raman-active phonons at 0.9 to 1.3 THz are found to govern the ultrafast THz-induced Kerr effect in the low-temperature orthorhombic phase and thus dominate the phonon-modulated polarizability with potential implications for dynamic charge carrier screening beyond the Fröhlich polaron. Our work opens the door to selective control of LHP's vibrational degrees of freedom governing phase transitions and dynamic disorder.

3.
Proc Natl Acad Sci U S A ; 119(30): e2122436119, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35862455

RESUMEN

Mechanistic studies on lead halide perovskites (LHPs) in recent years have suggested charge carrier screening as partially responsible for long carrier diffusion lengths and lifetimes that are key to superior optoelectronic properties. These findings have led to the ferroelectric large polaron proposal, which attributes efficient charge carrier screening to the extended ordering of dipoles from symmetry-breaking unit cells that undergo local structural distortion and break inversion symmetry. It remains an open question whether this proposal applies in general to semiconductors with LHP-like anharmonic and dynamically disordered phonons. Here, we study electron-phonon coupling in Bi2O2Se, a semiconductor which bears resemblance to LHPs in ionic bonding, spin-orbit coupling, band transport with long carrier diffusion lengths and lifetimes, and phonon disorder as revealed by temperature-dependent Raman spectroscopy. Using coherent phonon spectroscopy, we show the strong coupling of an anharmonic phonon mode at 1.50 THz to photo-excited charge carriers, while the Raman excitation of this mode is symmetry-forbidden in the ground-state. Density functional theory calculations show that this mode, originating from the A1g phonon of out-of-plane Bi/Se motion, gains oscillator strength from symmetry-lowering in polaron formation. Specifically, lattice distortion upon ultrafast charge localization results in extended ordering of symmetry-breaking unit cells and a planar polaron wavefunction, namely a two-dimensional polaron in a three-dimensional lattice. This study provides experimental and theoretical insights into charge interaction with anharmonic phonons in Bi2O2Se and suggests ferroelectric polaron formation may be a general principle for efficient charge carrier screening and for defect-tolerant semiconductors.

4.
J Phys Chem Lett ; 12(20): 5016-5022, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34018751

RESUMEN

Optical anisotropy originates from crystalline structures with low symmetry and governs the polarization-dependent light propagation. Optical anisotropy is particularly important to lead halide perovskites that have been under intense investigation for optoelectronic and photonic applications, as this group of materials possesses rich structural phases that deviate from the high-symmetry cubic phase. Here we apply 2D optical Kerr effect spectroscopy to quantify the optical anisotropy in single-crystal methylammonium lead bromide (MAPbBr3). We determine the strong photon energy dependence of optical anisotropy near the band gap and show the dramatic change in optical anisotropy across phase transitions. We correlate the optical anisotropy with the structural anisotropy and demonstrate the tuning of optical anisotropy by alloyed CsxMA1-xPbBr3 perovskite crystals.

5.
J Chem Phys ; 154(9): 094202, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33685130

RESUMEN

The ultrafast optical Kerr effect (OKE) is widely used to investigate the structural dynamics and interactions of liquids, solutions, and solids by observing their intrinsic nonlinear temporal responses through nearly collinear four-wave mixing. Non-degenerate mixing schemes allow for background free detection and can provide information on the interplay between a material's internal degrees of freedom. Here, we show a source of temporal dynamics in the OKE signal that is not reflective of the internal degrees of freedom but arises from a group index and momentum mismatch. It is observed in two-color experiments on condensed media with sizable spectral dispersion, a common property near an optical resonance. In particular, birefringence in crystalline solids is able to entirely change the character of the OKE signal via the off-diagonal tensor elements of the nonlinear susceptibility. We develop a detailed description of the phase-mismatched ultrafast OKE and show how to extract quantitative information on the spectrally resolved birefringence and group index from time-resolved experiments in one and two dimensions.

6.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33558241

RESUMEN

The ultrafast polarization response to incident light and ensuing exciton/carrier generation are essential to outstanding optoelectronic properties of lead halide perovskites (LHPs). A large number of mechanistic studies in the LHP field to date have focused on contributions to polarizability from organic cations and the highly polarizable inorganic lattice. For a comprehensive understanding of the ultrafast polarization response, we must additionally account for the nearly instantaneous hyperpolarizability response to the propagating light field itself. While light propagation is pivotal to optoelectronics and photonics, little is known about this in LHPs in the vicinity of the bandgap where stimulated emission, polariton condensation, superfluorescence, and photon recycling may take place. Here we develop two-dimensional optical Kerr effect (2D-OKE) spectroscopy to energetically dissect broadband light propagation and dispersive nonlinear polarization responses in LHPs. In contrast to earlier interpretations, the below-bandgap OKE responses in both hybrid CH3NH3PbBr3 and all-inorganic CsPbBr3 perovskites are found to originate from strong hyperpolarizability and highly anisotropic dispersions. In both materials, the nonlinear mixing of anisotropically propagating light fields results in convoluted oscillatory polarization dynamics. Based on a four-wave mixing model, we quantitatively derive dispersion anisotropies, reproduce 2D-OKE frequency correlations, and establish polarization-dressed light propagation in single-crystal LHPs. Moreover, our findings highlight the importance of distinguishing the often-neglected anisotropic light propagation from underlying coherent quasiparticle responses in various forms of ultrafast spectroscopy.

7.
Struct Dyn ; 5(6): 064501, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30868081

RESUMEN

Material properties can be controlled via strain, pressure, chemical composition, or dimensionality. Nickelates are particularly susceptible due to their strong variations of the electronic and magnetic properties on such external stimuli. Here, we analyze the photoinduced dynamics in a single crystalline NdNiO3 film upon excitation across the electronic gap. Using time-resolved reflectivity and resonant x-ray diffraction, we show that the pump pulse induces an insulator-to-metal transition, accompanied by the melting of the charge order. Finally, we compare our results with similar studies in manganites and show that the same model can be used to describe the dynamics in nickelates, hinting towards a unified description of these photoinduced electronic ordering phase transitions.

8.
J Biomed Nanotechnol ; 11(11): 1975-88, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26554156

RESUMEN

The topical administration of chemotherapeutics is a promising approach for the treatment of skin cancer; however, different pharmaceutical strategies are required to allow large amounts of drug to penetrate tumors. This work examined the potential of the anodic iontophoresis of doxorubicin-loaded cationic solid lipid nanoparticles (DOX-SLN) to increase the distribution and tumor penetration of DOX. A double-labeled cationic DOX-SLN composed of the lipids stearic acid and monoolein and a new BODIPY dye was prepared and characterized. The skin distribution and penetration of DOX were evaluated in vitro using confocal microscopy and vertical diffusion cells, respectively. The antitumor potential was evaluated in vivo through the anodic iontophoresis of DOX-SLN in squamous cell carcinoma induced in nude BALB/c mice. The encapsulation of DOX drastically altered the DOX partition coefficient and increased the distribution of DOX in the lipid matrix of the stratum corneum (SC). The association with iontophoresis created high-concentration drug reservoir zones in the follicles of the skin. Although the iontophoresis of a DOX solution increased the penetration of DOX in the viable epidermis by approximately 4-fold, the iontophoresis of cationic DOX-SLN increased the DOX penetration by approximately 50-fold. In vivo, the DOX-SLN iontophoretic treatment was effective in inhibiting tumor cell survival and tumor growth and was accompanied by an increase in keratinization and consequent cell death. These results indicate a strong and synergic effect of iontophoresis with DOX-SLN and provide a potential strategy for the treatment of skin cancer.


Asunto(s)
Antineoplásicos/química , Doxorrubicina/química , Lípidos/química , Nanopartículas/química , Neoplasias Cutáneas/tratamiento farmacológico , Piel/metabolismo , Administración Tópica , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapéutico , Femenino , Iontoforesis , Lípidos/administración & dosificación , Lípidos/farmacocinética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/administración & dosificación , Absorción Cutánea , Porcinos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Phys Med Biol ; 57(1): 51-68, 2012 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-22126746

RESUMEN

Increased accuracy in radiation delivery to a patient provided by scanning particle beams leads to high demands on quality assurance (QA). To meet the requirements, an extensive quality assurance programme has been implemented at the Heidelberg Ion Beam Therapy Center. Currently, high-resolution radiographic films are used for beam spot position measurements and homogeneity measurements for scanned fields. However, given that using this film type is time and equipment demanding, considerations have been made to replace the radiographic films in QA by another appropriate device. In this study, the suitability of the flat-panel detector RID 256 L based on amorphous silicon was investigated as an alternative method. The currently used radiographic films were taken as a reference. Investigations were carried out for proton and carbon ion beams. The detectors were irradiated simultaneously to allow for a direct comparison. The beam parameters (e.g. energy, focus, position) currently used in the daily QA procedures were applied. Evaluation of the measurements was performed using newly implemented automatic routines. The results for the flat-panel detector were compared to the standard radiographic films. Additionally, a field with intentionally decreased homogeneity was applied to test the detector's sensitivities toward possible incorrect scan parameters. For the beam position analyses, the flat-panel detector results showed good agreement with radiographic films. For both detector types, deviations between measured and planned spot distances were found to be below 1% (1 mm). In homogeneously irradiated fields, the flat-panel detector showed a better dose response homogeneity than the currently used radiographic film. Furthermore, the flat-panel detector is sensitive to field irregularities. The flat-panel detector was found to be an adequate replacement for the radiographic film in QA measurements. In addition, it saves time and equipment because no post-exposure treatment and no developer and darkroom facilities are needed.


Asunto(s)
Radioterapia Asistida por Computador/normas , Carbono/química , Carbono/uso terapéutico , Control de Calidad , Radioterapia Asistida por Computador/instrumentación , Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA