Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
2.
Artículo en Inglés | MEDLINE | ID: mdl-39361723

RESUMEN

Biobanking of tissue from clinically obtained kidney biopsies for later use with multi-omic and imaging techniques is an inevitable step to overcome the need of disease model systems and towards translational medicine. Hence, collection protocols ensuring integration into daily clinical routines using preservation media not requiring liquid nitrogen but instantly preserving kidney tissue for clinical and scientific analyses are of paramount importance. Thus, we modified a robust single nucleus dissociation protocol for kidney tissue stored snap frozen or in the preservation media RNAlaterand CellCover. Using porcine kidney tissue as surrogate for human kidney tissue, we conducted single nucleus RNA sequencing with the Chromium 10X Genomics platform. The resulting data sets from each storage condition were analyzed to identify any potential variations in transcriptomic profiles. Furthermore, we assessed the suitability of the preservation media for additional analysis techniques (proteomics, metabolomics) and the preservation of tissue architecture for histopathological examination including immunofluorescence staining. In this study, we show that in daily clinical routines the RNAlater facilitates the collection of highly preserved human kidney biopsies and enables further analysis with cutting-edge techniques like single nucleus RNA sequencing, proteomics, and histopathological evaluation. Only metabolome analysis is currently restricted to snap frozen tissue. This work will contribute to build tissue biobanks with well-defined cohorts of the respective kidney disease that can be deeply molecularly characterized, opening new horizons for the identification of unique cells, pathways and biomarkers for the prevention, early identification, and targeted therapy of kidney diseases.

4.
Nat Commun ; 15(1): 8220, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300109

RESUMEN

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis is a life-threatening autoimmune disease that often results in kidney failure caused by crescentic glomerulonephritis (GN). To date, treatment of most patients with ANCA-GN relies on non-specific immunosuppressive agents, which may have serious adverse effects and be only partially effective. Here, using spatial and single-cell transcriptome analysis, we characterize inflammatory niches in kidney samples from 34 patients with ANCA-GN and identify proinflammatory, cytokine-producing CD4+ and CD8+ T cells as a pathogenic signature. We then utilize these transcriptomic profiles for digital pharmacology and identify ustekinumab, a monoclonal antibody targeting IL-12 and IL-23, as the strongest therapeutic drug to use. Moreover, four patients with relapsing ANCA-GN are treated with ustekinumab in combination with low-dose cyclophosphamide and steroids, with ustekinumab given subcutaneously (90 mg) at weeks 0, 4, 12, and 24. Patients are followed up for 26 weeks to find this treatment well-tolerated and inducing clinical responses, including improved kidney function and Birmingham Vasculitis Activity Score, in all ANCA-GN patients. Our findings thus suggest that targeting of pathogenic T cells in ANCA-GN patients with ustekinumab might represent a potential approach and warrants further investigation in clinical trials.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Glomerulonefritis , Ustekinumab , Humanos , Ustekinumab/uso terapéutico , Ustekinumab/farmacología , Glomerulonefritis/tratamiento farmacológico , Glomerulonefritis/inmunología , Masculino , Femenino , Persona de Mediana Edad , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/tratamiento farmacológico , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/inmunología , Anticuerpos Anticitoplasma de Neutrófilos/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Interleucina-12/metabolismo , Anciano , Adulto , Riñón/patología , Riñón/efectos de los fármacos , Riñón/inmunología , Ciclofosfamida/uso terapéutico , Ciclofosfamida/farmacología , Perfilación de la Expresión Génica , Inmunosupresores/uso terapéutico , Inmunosupresores/farmacología , Análisis de la Célula Individual
5.
Artículo en Inglés | MEDLINE | ID: mdl-39245994

RESUMEN

BACKGROUND: Ageing is a complex multifactorial process, impacting all organs and tissues, with DNA damage accumulation serving as a common underlying cause. To decelerate ageing, various strategies have been applied to model organisms and evaluated for health and lifespan benefits. Dietary restriction (DR, also known as caloric restriction) is a well-established long-term intervention recognized for its universal anti-ageing effects. DR temporarily suppresses growth, and when applied to progeroid DNA repair-deficient mice doubles lifespan with systemic health benefits. Counterintuitively, attenuation of myostatin/activin signalling by soluble activin receptor (sActRIIB), boosts the growth of muscle and, in these animals, prevents muscle wasting, improves kidney functioning, and compresses morbidity. METHODS: Here, we investigated a combined approach, applying an anabolic regime (sActRIIB) at the same time as DR to Ercc1Δ/- progeroid mice. Following both single treatments and combined, we monitored global effects on body weight, lifespan and behaviour, and local effects on muscle and tissue weight, muscle morphology and function, and ultrastructural and transcriptomic changes in muscle and kidney. RESULTS: Lifespan was mostly influenced by DR (extended from approximately 20 to 40 weeks; P < 0.001), with sActRIIB clearly increasing muscle mass (35-65%) and tetanic force (P < 0.001). The combined regime yielded a stable uniform body weight, but increased compared with DR alone, synergistically improved motor coordination and further delayed the onset and development of balance problems. sActRIIB significantly increased muscle fibre size (P < 0.05) in mice subjected to DR and lowered all signs of muscle damage. Ercc1Δ/- mice showed abnormal neuromuscular junctions. Single interventions by sActRIIB treatment or DR only partially rescued this phenotype, while in the double intervention group, the regularly shaped junctional foldings were maintained. In kidney of Ercc1Δ/- mice, we observed a mild but significant foot process effacement, which was restored by either intervention. Transcriptome analysis also pointed towards reduced levels of DNA damage in muscle and kidney by DR, but not sActRIIB, while these levels retained lower in the double intervention. CONCLUSIONS: In muscle, we found synergistic effects of combining sActRIIB with DR, but not in kidney, with an overall better health in the double intervention group. Crucially, the benefits of each single intervention are not lost when administered in combination, but rather strengthened, even when sActRIIB was applied late in life, opening opportunities for translation to human.

6.
J Clin Invest ; 134(17)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39225099

RESUMEN

Adeno-associated virus (AAV) is a promising in vivo gene delivery platform showing advantages in delivering therapeutic molecules to difficult or undruggable cells. However, natural AAV serotypes have insufficient transduction specificity and efficiency in kidney cells. Here, we developed an evolution-directed selection protocol for renal glomeruli and identified what we believe to be a new vector termed AAV2-GEC that specifically and efficiently targets the glomerular endothelial cells (GEC) after systemic administration and maintains robust GEC tropism in healthy and diseased rodents. AAV2-GEC-mediated delivery of IdeS, a bacterial antibody-cleaving proteinase, provided sustained clearance of kidney-bound antibodies and successfully treated antiglomerular basement membrane glomerulonephritis in mice. Taken together, this study showcases the potential of AAV as a gene delivery platform for challenging cell types. The development of AAV2-GEC and its successful application in the treatment of antibody-mediated kidney disease represents a significant step forward and opens up promising avenues for kidney medicine.


Asunto(s)
Dependovirus , Terapia Genética , Vectores Genéticos , Animales , Dependovirus/genética , Ratones , Terapia Genética/métodos , Vectores Genéticos/genética , Humanos , Células Endoteliales/metabolismo , Glomérulos Renales/patología , Glomerulonefritis/terapia , Glomerulonefritis/genética , Glomerulonefritis/inmunología , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/terapia , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/genética , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/inmunología
7.
Biol Sex Differ ; 15(1): 72, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278930

RESUMEN

BACKGROUND: Sex differences exist in the prevalence and progression of major glomerular diseases. Podocytes are the essential cell-type in the kidney which maintain the physiological blood-urine barrier, and pathological changes in podocyte homeostasis are critical accelerators of impairment of kidney function. However, sex-specific molecular signatures of podocytes under physiological and stress conditions remain unknown. This work aimed at identifying sexual dimorphic molecular signatures of podocytes under physiological condition and pharmacologically challenged homeostasis with mechanistic target of rapamycin (mTOR) inhibition. mTOR is a crucial regulator involved in a variety of physiological and pathological stress responses in the kidney and inhibition of this pathway may therefore serve as a general stress challenger to get fundamental insights into sex differences in podocytes. METHODS: The genomic ROSAmT/mG-NPHS2 Cre mouse model was used which allows obtaining highly pure podocyte fractions for cell-specific molecular analyses, and vehicle or pharmacologic treatment with the mTOR inhibitor rapamycin was performed for 3 weeks. Subsequently, deep RNA sequencing and proteomics were performed of the isolated podocytes to identify intrinsic sex differences. Studies were supplemented with metabolomics from kidney cortex tissues. RESULTS: Although kidney function and morphology remained normal in all experimental groups, RNA sequencing, proteomics and metabolomics revealed strong intrinsic sex differences in the expression levels of mitochondrial, translation and structural transcripts, protein abundances and regulation of metabolic pathways. Interestingly, rapamycin abolished prominent sex-specific clustering of podocyte gene expression and induced major changes only in male transcriptome. Several sex-biased transcription factors could be identified as possible upstream regulators of these sexually dimorphic responses. Concordant to transcriptomics, metabolomic changes were more prominent in males. Remarkably, high number of previously reported kidney disease genes showed intrinsic sexual dimorphism and/or different response patterns towards mTOR inhibition. CONCLUSIONS: Our results highlight remarkable intrinsic sex-differences and sex-specific response patterns towards pharmacological challenged podocyte homeostasis which might fundamentally contribute to sex differences in kidney disease susceptibilities and progression. This work provides rationale and an in-depth database for novel targets to be tested in specific kidney disease models to advance with sex-specific treatment strategies.


The global burden of chronic kidney diseases is rapidly increasing and is projected to become the fifth most common cause of years of life lost worldwide by 2040. Sexual dimorphism in kidney diseases and transplantation is well known, yet sex-specific therapeutic strategies are still missing. One reason is the lack of knowledge due to the lack of inclusion of sex as a biological variable in study designs. This work aimed at identification of molecular signatures of male and female podocytes, gate-keepers of the glomerular filtration barrier. Like cardiomyocytes, podocytes are terminally differentiated cells which are highly susceptible towards pathological challenges. Podocytes are the decisive cell-type of the kidney to maintain the physiological blood-urine barrier, and disturbances of their homeostasis critically accelerate kidney function impairment. By help of a genomic mouse model, highly purified podocytes were obtained from male and female mice with and without pharmacological challenge of the mechanistic target of rapamycin (mTOR) signaling pathway which is known to be deregulated in major kidney diseases. Deep RNA sequencing, proteomics and metabolomics revealed strong intrinsic sex differences in the expression levels of mitochondrial, translation and structural transcripts, protein abundances and regulation of metabolic pathways which might fundamentally contribute to sex differences in kidney disease susceptibilities and progression. Remarkably, high number of previously reported kidney disease genes showed so far unknown intrinsic sexual dimorphism and/or different response patterns towards mTOR inhibition. Our work provides an in-depth database for novel targets to be tested in kidney disease models to advance with sex-specific treatment strategies.


Asunto(s)
Homeostasis , Podocitos , Caracteres Sexuales , Sirolimus , Animales , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Masculino , Femenino , Sirolimus/farmacología , Homeostasis/efectos de los fármacos , Ratones , Serina-Treonina Quinasas TOR/metabolismo , Transcriptoma , Inhibidores mTOR/farmacología
8.
Kidney Int ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218392

RESUMEN

Progression of cystic kidney disease has been linked to activation of the mTORC1 signaling pathway. Yet the utility of mTORC1 inhibitors to treat patients with polycystic kidney disease remains controversial despite promising preclinical data. To define the cell intrinsic role of mTORC1 for cyst development, the mTORC1 subunit gene Raptor was selectively inactivated in kidney tubular cells lacking cilia due to simultaneous deletion of the kinesin family member gene Kif3A. In contrast to a rapid onset of cyst formation and kidney failure in mice with defective ciliogenesis, both kidney function, cyst formation discerned by magnetic resonance imaging and overall survival were strikingly improved in mice additionally lacking Raptor. However, these mice eventually succumbed to cystic kidney disease despite mTORC1 inactivation. In-depth transcriptome analysis revealed the rapid activation of other growth-promoting signaling pathways, overriding the effects of mTORC1 deletion and identified cyclin-dependent kinase (CDK) 4 as an alternate driver of cyst growth. Additional inhibition of CDK4-dependent signaling by the CDK4/6 inhibitor Palbociclib markedly slowed disease progression in mice and human organoid models of polycystic kidney disease and potentiated the effects of mTORC1 deletion/inhibition. Our findings indicate that cystic kidneys rapidly adopt bypass mechanisms typically observed in drug resistant cancers. Thus, future clinical trials need to consider combinatorial or sequential therapies to improve therapeutic efficacy in patients with cystic kidney disease.

9.
Nat Commun ; 15(1): 7368, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191768

RESUMEN

The kidney tubules constitute two-thirds of the cells of the kidney and account for the majority of the organ's metabolic energy expenditure. Acute tubular injury (ATI) is observed across various types of kidney diseases and may significantly contribute to progression to kidney failure. Non-invasive biomarkers of ATI may allow for early detection and drug development. Using the SomaScan proteomics platform on 434 patients with biopsy-confirmed kidney disease, we here identify plasma biomarkers associated with ATI severity. We employ regional transcriptomics and proteomics, single-cell RNA sequencing, and pathway analysis to explore biomarker protein and gene expression and enriched biological pathways. Additionally, we examine ATI biomarker associations with acute kidney injury (AKI) in the Kidney Precision Medicine Project (KPMP) (n = 44), the Atherosclerosis Risk in Communities (ARIC) study (n = 4610), and the COVID-19 Host Response and Clinical Outcomes (CHROME) study (n = 268). Our findings indicate 156 plasma proteins significantly linked to ATI with osteopontin, macrophage mannose receptor 1, and tenascin C showing the strongest associations. Pathway analysis highlight immune regulation and organelle stress responses in ATI pathogenesis.


Asunto(s)
Lesión Renal Aguda , Biomarcadores , COVID-19 , Osteopontina , Proteómica , Humanos , Lesión Renal Aguda/sangre , Proteómica/métodos , Masculino , Biomarcadores/sangre , Femenino , Persona de Mediana Edad , COVID-19/sangre , Osteopontina/sangre , Tenascina/sangre , Tenascina/genética , Tenascina/metabolismo , Túbulos Renales/metabolismo , Túbulos Renales/patología , Anciano , Adulto , SARS-CoV-2 , Análisis de la Célula Individual , Proteínas Sanguíneas/metabolismo
10.
Neural Dev ; 19(1): 13, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049046

RESUMEN

The cell-adhesion molecule NEPH1 is required for maintaining the structural integrity and function of the glomerulus in the kidneys. In the nervous system of Drosophila and C. elegans, it is involved in synaptogenesis and axon branching, which are essential for establishing functional circuits. In the mammalian nervous system, the expression regulation and function of Neph1 has barely been explored. In this study, we provide a spatiotemporal characterization of Neph1 expression in mouse dorsal root ganglia (DRGs) and spinal cord. After the neurogenic phase, Neph1 is broadly expressed in the DRGs and in their putative targets at the dorsal horn of the spinal cord, comprising both GABAergic and glutamatergic neurons. Interestingly, we found that PRRXL1, a homeodomain transcription factor that is required for proper establishment of the DRG-spinal cord circuit, prevents a premature expression of Neph1 in the superficial laminae of the dorsal spinal cord at E14.5, but has no regulatory effect on the DRGs or on either structure at E16.5. By chromatin immunoprecipitation analysis of the dorsal spinal cord, we identified four PRRXL1-bound regions within the Neph1 introns, suggesting that PRRXL1 directly regulates Neph1 transcription. We also showed that Neph1 is required for branching, especially at distal neurites. Together, our work showed that Prrxl1 prevents the early expression of Neph1 in the superficial dorsal horn, suggesting that Neph1 might function as a downstream effector gene for proper assembly of the DRG-spinal nociceptive circuit.


Asunto(s)
Ganglios Espinales , Proteínas de Homeodominio , Neuritas , Asta Dorsal de la Médula Espinal , Factores de Transcripción , Animales , Ratones , Asta Dorsal de la Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/citología , Neuritas/metabolismo , Neuritas/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ganglios Espinales/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso
11.
Am J Hypertens ; 37(10): 810-825, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38934290

RESUMEN

BACKROUND: Complement activation may facilitate hypertension through its effects on immune responses. The anaphylatoxin C5a, a major inflammatory effector, binds to the C5a receptors 1 and 2 (C5aR1, C5aR2). We have recently shown that C5aR1-/- mice have reduced hypertensive renal injury. The role of C5aR2 in hypertension is unknown. METHODS: For examination of C5aR2 expression on infiltrating and resident renal cells a tandem dye Tomato-C5aR2 knock-in reporter mouse was used. Human C5aR2 expression was analyzed in a single-cell RNAseq data set from the kidneys of hypertensive patients. Finally, we examined the effect of angiotensin II-induced hypertension in C5aR2-deficient mice. RESULTS: Flow cytometric analysis of leukocytes isolated from kidneys of the reporter mice showed that dendritic cells are the major C5aR2-expressing population (34%) followed by monocyte/macrophages (30%) and neutrophils (14%). Using confocal microscopy C5aR2 was not detected in resident renal or cardiac cells. In the human kidney, C5aR2 was also mainly found in monocytes, macrophages, and dendritic cells with a significantly higher expression in hypertension (P < 0.05). Unilateral nephrectomy was performed followed by infusion of Ang II (0.75 ng/g/min) and a high salt diet in wildtype (n = 18) and C5aR2-deficient mice (n = 14). Blood pressure, renal injury (albuminuria, glomerular filtration rate, glomerular and tubulointerstitial injury, inflammation), and cardiac injury (cardiac fibrosis, heart weight, gene expression) did not differ between hypertensive wildtype and C5aR2-/- mice. CONCLUSIONS: In summary, C5aR2 is mainly expressed in myeloid cells in the kidney in mice and humans but its deficiency has no effect on Ang II-induced hypertensive injury.


Asunto(s)
Angiotensina II , Hipertensión , Riñón , Receptor de Anafilatoxina C5a , Animales , Receptor de Anafilatoxina C5a/metabolismo , Receptor de Anafilatoxina C5a/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Humanos , Riñón/patología , Riñón/metabolismo , Riñón/inmunología , Masculino , Ratones Noqueados , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones , Presión Sanguínea , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/inducido químicamente , Hipertensión Renal , Nefritis
12.
Sci Immunol ; 9(96): eadd6774, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875317

RESUMEN

Pro-inflammatory CD4+ T cells are major drivers of autoimmune diseases, yet therapies modulating T cell phenotypes to promote an anti-inflammatory state are lacking. Here, we identify T helper 17 (TH17) cell plasticity in the kidneys of patients with antineutrophil cytoplasmic antibody-associated glomerulonephritis on the basis of single-cell (sc) T cell receptor analysis and scRNA velocity. To uncover molecules driving T cell polarization and plasticity, we established an in vivo pooled scCRISPR droplet sequencing (iCROP-seq) screen and applied it to mouse models of glomerulonephritis and colitis. CRISPR-based gene targeting in TH17 cells could be ranked according to the resulting transcriptional perturbations, and polarization biases into T helper 1 (TH1) and regulatory T cells could be quantified. Furthermore, we show that iCROP-seq can facilitate the identification of therapeutic targets by efficient functional stratification of genes and pathways in a disease- and tissue-specific manner. These findings uncover TH17 to TH1 cell plasticity in the human kidney in the context of renal autoimmunity.


Asunto(s)
Análisis de la Célula Individual , Células Th17 , Animales , Humanos , Ratones , Células Th17/inmunología , Glomerulonefritis/inmunología , Glomerulonefritis/genética , Plasticidad de la Célula/inmunología , Plasticidad de la Célula/genética , Riñón/inmunología , Riñón/patología , Ratones Endogámicos C57BL , Sistemas CRISPR-Cas , Colitis/inmunología , Colitis/genética , Inflamación/inmunología , Inflamación/genética , Femenino , Masculino , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología
13.
N Engl J Med ; 391(5): 422-433, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38804512

RESUMEN

BACKGROUND: Minimal change disease and primary focal segmental glomerulosclerosis in adults, along with idiopathic nephrotic syndrome in children, are immune-mediated podocytopathies that lead to nephrotic syndrome. Autoantibodies targeting nephrin have been found in patients with minimal change disease, but their clinical and pathophysiological roles are unclear. METHODS: We conducted a multicenter study to analyze antinephrin autoantibodies in adults with glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, antineutrophil cytoplasmic antibody-associated glomerulonephritis, and lupus nephritis, as well as in children with idiopathic nephrotic syndrome and in controls. We also created an experimental mouse model through active immunization with recombinant murine nephrin. RESULTS: The study included 539 patients (357 adults and 182 children) and 117 controls. Among the adults, antinephrin autoantibodies were found in 46 of the 105 patients (44%) with minimal change disease, 7 of 74 (9%) with primary focal segmental glomerulosclerosis, and only in rare cases among the patients with other conditions. Of the 182 children with idiopathic nephrotic syndrome, 94 (52%) had detectable antinephrin autoantibodies. In the subgroup of patients with active minimal change disease or idiopathic nephrotic syndrome who were not receiving immunosuppressive treatment, the prevalence of antinephrin autoantibodies was as high as 69% and 90%, respectively. At study inclusion and during follow-up, antinephrin autoantibody levels were correlated with disease activity. Experimental immunization induced a nephrotic syndrome, a minimal change disease-like phenotype, IgG localization to the podocyte slit diaphragm, nephrin phosphorylation, and severe cytoskeletal changes in mice. CONCLUSIONS: In this study, circulating antinephrin autoantibodies were common in patients with minimal change disease or idiopathic nephrotic syndrome and appeared to be markers of disease activity. Their binding at the slit diaphragm induced podocyte dysfunction and nephrotic syndrome, which highlights their pathophysiological significance. (Funded by Deutsche Forschungsgemeinschaft and others.).


Asunto(s)
Autoanticuerpos , Proteínas de la Membrana , Podocitos , Adulto , Anciano , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Biopsia , Modelos Animales de Enfermedad , Glomerulonefritis por IGA/sangre , Glomerulonefritis por IGA/inmunología , Glomerulonefritis por IGA/patología , Glomeruloesclerosis Focal y Segmentaria/sangre , Glomeruloesclerosis Focal y Segmentaria/inmunología , Glomeruloesclerosis Focal y Segmentaria/patología , Nefritis Lúpica/sangre , Nefritis Lúpica/inmunología , Nefritis Lúpica/patología , Proteínas de la Membrana/inmunología , Nefrosis Lipoidea/sangre , Nefrosis Lipoidea/inmunología , Nefrosis Lipoidea/patología , Síndrome Nefrótico/sangre , Síndrome Nefrótico/inmunología , Síndrome Nefrótico/patología , Podocitos/inmunología , Podocitos/patología
14.
Eur J Intern Med ; 127: 119-125, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38749845

RESUMEN

BACKGROUND: The increasing admissions of very elderly patients to intensive care units (ICUs) over recent decades highlight a growing need for understanding acute kidney injury (AKI) in this population. Although these individuals are potentially at high risk for AKI and adverse outcomes, data on AKI in this population is scarce. This study investigates the AKI incidence and outcomes of critically-ill patients aging at least 90 years. METHODS: This retrospective cohort study conducted at the Department of Intensive Care Medicine, University Medical Centre Hamburg-Eppendorf, Germany (2008-2020), investigates AKI incidence and outcomes between 2008 and 2020 in critically-ill patients aged ≥ 90 years. AKI was defined according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria using creatinine dynamics and/or urine output. Primary endpoint was overall mortality after 1 year. Secondary endpoints were in-hospital mortality, length of ICU and hospital stay. RESULTS: During the study period 92,958 critically-ill patients were treated and 1108 were ≥ 90 years. Of these, 1054 patients had available creatinine values and were included in the present study. AKI occurred in 24.4%, mostly classified as mild (17.5%). AKI was independently associated with a significant increase in overall mortality (HR 1.21, 95 %-CI: 1.01-1.46), in-hospital mortality (OR 2, 1.41-2.85), length of ICU (+2.8 days, 2.3-3.3) and hospital stay (+2.3 days, 0.9-3.7). Severity escalated these effects, but even mild AKI showed significance. Introducing urine-based criteria increased incidence but compromised mortality prediction. CONCLUSIONS: AKI is a frequent complication in very elderly critically-ill patients. Occurrence of AKI at any stage was associated with increased mortality. Predictive ability applied to AKI defined by creatinine but not urine output. Careful attention of creatinine dynamics is essential in very elderly ICU-patients.


Asunto(s)
Lesión Renal Aguda , Creatinina , Enfermedad Crítica , Mortalidad Hospitalaria , Unidades de Cuidados Intensivos , Humanos , Lesión Renal Aguda/mortalidad , Lesión Renal Aguda/epidemiología , Masculino , Femenino , Estudios Retrospectivos , Anciano de 80 o más Años , Enfermedad Crítica/mortalidad , Alemania/epidemiología , Creatinina/sangre , Incidencia , Tiempo de Internación/estadística & datos numéricos , Factores de Riesgo
15.
Nat Med ; 30(6): 1622-1635, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760585

RESUMEN

Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals a high abundance of malignant stemcell-like cells in high-neural glioblastoma, primarily of the neural lineage. These cells are further classified as neural-progenitor-cell-like, astrocyte-like and oligodendrocyte-progenitor-like, alongside oligodendrocytes and excitatory neurons. In line with these findings, high-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature is associated with decreased overall and progression-free survival. High-neural tumors also exhibit increased functional connectivity in magnetencephalography and resting-state magnet resonance imaging and can be detected via DNA analytes and brain-derived neurotrophic factor in patients' plasma. The prognostic importance of the neural signature was further validated in patients diagnosed with diffuse midline glioma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant. High-neural gliomas likely require a maximized surgical resection approach for improved outcomes.


Asunto(s)
Neoplasias Encefálicas , Epigénesis Genética , Glioma , Humanos , Pronóstico , Glioma/genética , Glioma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Metilación de ADN/genética , Animales , Ratones , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Persona de Mediana Edad , Neuronas/patología , Neuronas/metabolismo , Adulto , Análisis de la Célula Individual , Línea Celular Tumoral , Transcriptoma , Clasificación del Tumor
16.
Eur Radiol ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777903

RESUMEN

OBJECTIVE: To analyze changes in the muscular fat fraction (FF) during immobilization at the intensive care unit (ICU) using dual-energy CT (DECT) and evaluate the predictive value of the DECT FF as a new imaging biomarker for morbidity and survival. METHODS: Immobilized ICU patients (n = 81, 43.2% female, 60.3 ± 12.7 years) were included, who received two dual-source DECT scans (CT1, CT2) within a minimum interval of 10 days between 11/2019 and 09/2022. The DECT FF was quantified for the posterior paraspinal muscle by two radiologists using material decomposition. The skeletal muscle index (SMI), muscle radiodensity attenuation (MRA), subcutaneous-/ visceral adipose tissue area (SAT, VAT), and waist circumference (WC) were assessed. Reasons for ICU admission, clinical scoring systems, therapeutic regimes, and in-hospital mortality were noted. Linear mixed models, Cox regression, and intraclass correlation coefficients were employed. RESULTS: Between CT1 and CT2 (median 21 days), the DECT FF increased (from 20.9% ± 12.0 to 27.0% ± 12.0, p = 0.001). The SMI decreased (35.7 cm2/m2 ± 8.8 to 31.1 cm2/m2 ± 7.6, p < 0.001) as did the MRA (29 HU ± 10 to 26 HU ± 11, p = 0.009). WC, SAT, and VAT did not change. In-hospital mortality was 61.5%. In multivariable analyses, only the change in DECT FF was associated with in-hospital mortality (hazard ratio (HR) 9.20 [1.78-47.71], p = 0.008), renal replacement therapy (HR 48.67 [9.18-258.09], p < 0.001), and tracheotomy at ICU (HR 37.22 [5.66-245.02], p < 0.001). Inter-observer reproducibility of DECT FF measurements was excellent (CT1: 0.98 [0.97; 0.99], CT2: 0.99 [0.96-0.99]). CONCLUSION: The DECT FF appears to be suitable for detecting increasing myosteatosis. It seems to have predictive value as a new imaging biomarker for ICU patients. CLINICAL RELEVANCE STATEMENT: The dual-energy CT muscular fat fraction appears to be a robust imaging biomarker to detect and monitor myosteatosis. It has potential for prognosticating, risk stratifying, and thereby guiding therapeutic nutritional regimes and physiotherapy in critically ill patients. KEY POINTS: The dual-energy CT muscular fat fraction detects increasing myosteatosis caused by immobilization. Change in dual-energy CT muscular fat fraction was a predictor of  in-hospital morbidity and mortality. Dual-energy CT muscular fat fraction had a predictive value superior to established CT body composition parameters.

17.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612488

RESUMEN

Effective management of chronic kidney disease (CKD), a major health problem worldwide, requires accurate and timely diagnosis, prognosis of progression, assessment of therapeutic efficacy, and, ideally, prediction of drug response. Multiple biomarkers and algorithms for evaluating specific aspects of CKD have been proposed in the literature, many of which are based on a small number of samples. Based on the evidence presented in relevant studies, a comprehensive overview of the different biomarkers applicable for clinical implementation is lacking. This review aims to compile information on the non-invasive diagnostic, prognostic, and predictive biomarkers currently available for the management of CKD and provide guidance on the application of these biomarkers. We specifically focus on biomarkers that have demonstrated added value in prospective studies or those based on prospectively collected samples including at least 100 subjects. Published data demonstrate that several valid non-invasive biomarkers of potential value in the management of CKD are currently available.


Asunto(s)
Insuficiencia Renal Crónica , Humanos , Estudios Prospectivos , Biomarcadores , Insuficiencia Renal Crónica/diagnóstico , Fibrosis , Riñón
18.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542491

RESUMEN

Effective management of glomerular kidney disease, one of the main categories of chronic kidney disease (CKD), requires accurate diagnosis, prognosis of progression, assessment of therapeutic efficacy, and, ideally, prediction of drug response. Multiple biomarkers and algorithms for the assessment of specific aspects of glomerular diseases have been reported in the literature. Though, the vast majority of these have not been implemented in clinical practice or are not available on a global scale due to limited access, missing medical infrastructure, or economical as well as political reasons. The aim of this review is to compile all currently available information on the diagnostic, prognostic, and predictive biomarkers currently available for the management of glomerular diseases, and provide guidance on the application of these biomarkers. As a result of the compiled evidence for the different biomarkers available, we present a decision tree for a non-invasive, biomarker-guided diagnostic path. The data currently available demonstrate that for the large majority of patients with glomerular diseases, valid biomarkers are available. However, despite the obvious disadvantages of kidney biopsy, being invasive and not applicable for monitoring, especially in the context of rare CKD etiologies, kidney biopsy still cannot be replaced by non-invasive strategies.


Asunto(s)
Riñón , Insuficiencia Renal Crónica , Humanos , Progresión de la Enfermedad , Riñón/patología , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/patología , Glomérulos Renales/patología , Biomarcadores , Tasa de Filtración Glomerular
19.
Kidney Int ; 105(5): 935-952, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447880

RESUMEN

The 14th International Podocyte Conference took place in Philadelphia, Pennsylvania, USA from May 23 to 26, 2023. It commenced with an early-career researchers' meeting on May 23, providing young scientists with a platform to present and discuss their research findings. Throughout the main conference, 29 speakers across 9 sessions shared their insights on podocyte biology, glomerular medicine, novel technologic advancements, and translational approaches. Additionally, the event featured 3 keynote lectures addressing engineered chimeric antigen receptor T cell- and mRNA-based therapies and the use of biobanks for enhanced disease comprehension. Furthermore, 4 brief oral abstract sessions allowed scientists to present their findings to a broad audience. The program also included a panel discussion addressing the challenges of conducting human research within the American Black community. Remarkably, after a 5-year hiatus from in-person conferences, the 14th International Podocyte Conference successfully convened scientists from around the globe, fostering the presentation and discussion of crucial research findings, as summarized in this review. Furthermore, to ensure continuous and sustainable education, research, translation, and trial medicine related to podocyte and glomerular diseases for the benefit of patients, the International Society of Glomerular Disease was officially launched during the conference.


Asunto(s)
Enfermedades Renales , Podocitos , Humanos , Glomérulos Renales , Enfermedades Renales/terapia , Biología
20.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473806

RESUMEN

Cisplatin nephrotoxicity is a critical limitation of solid cancer treatment. Until now, the complex interplay of various pathophysiological mechanisms leading to proximal tubular cell apoptosis after cisplatin exposure has not been fully understood. In our study, we assessed the role of the autophagy-related protein BECLIN1 (ATG6) in cisplatin-induced acute renal injury (AKI)-a candidate protein involved in autophagy and with putative impact on apoptosis by harboring a B-cell lymphoma 2 (BCL2) interaction site of unknown significance. By using mice with heterozygous deletion of Becn1, we demonstrate that reduced intracellular content of BECLIN1 does not impact renal function or autophagy within 12 months. However, these mice were significantly sensitized towards cisplatin-induced AKI, and by using Becn1+/-;Sglt2-Cre;Tomato/EGFP mice with subsequent primary cell analysis, we confirmed that nephrotoxicity depends on proximal tubular BECLIN1 content. Mechanistically, BECLIN1 did not impact autophagy or primarily the apoptotic pathway. In fact, a lack of BECLIN1 sensitized mice towards cisplatin-induced ER stress. Accordingly, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) blunted cisplatin-induced cell death in Becn1 heterozygosity. In conclusion, our data first highlight a novel role of BECLIN1 in protecting against cellular ER stress independent from autophagy. These novel findings open new therapeutic avenues to intervene in this important intracellular stress response pathway with a promising impact on future AKI management.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Ratones , Animales , Cisplatino/farmacología , Beclina-1/metabolismo , Lesión Renal Aguda/metabolismo , Autofagia , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA