Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Ecol ; 33(3): e17232, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38205900

RESUMEN

The importance and prevalence of recent ice-age and post-glacial speciation and species diversification during the Pleistocene across many organismal groups and physiographic settings are well established. However, the extent to which Pleistocene diversification can be attributed to climatic oscillations and their effects on distribution ranges and population structure remains debatable. In this study, we use morphologic, geographic and genetic (RADseq) data to document Pleistocene speciation and intra-specific diversification of the unifoliolate-leaved clade of Florida Lupinus, a small group of species largely restricted to inland and coastal sand ridges across the Florida peninsula and panhandle. Phylogenetic and demographic analyses alongside morphological and geographic evidence suggest that recent speciation and intra-specific divergence within this clade were driven by a combination of non-adaptive allopatric divergence caused by edaphic niche conservatism and opportunities presented by the emergence of new post-glacial sand ridge habitats. These results highlight the central importance of even modest geographic isolation and short periods of allopatric divergence following range expansion in the emergence of new taxa and add to the growing evidence that Pleistocene climatic oscillations may contribute to rapid diversification in a myriad of physiographic settings. Furthermore, our results shed new light on long-standing taxonomic debate surrounding the number of species in the Florida unifoliate Lupinus clade providing support for recognition of five species and a set of intra-specific variants. The important conservation implications for the narrowly restricted, highly endangered species Lupinus aridorum, which we show to be genetically distinct from its sister species Lupinus westianus, are discussed.


Asunto(s)
Lupinus , Filogenia , Florida , Arena , Ecosistema
2.
Sci Adv ; 9(7): eade4954, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800419

RESUMEN

Early natural historians-Comte de Buffon, von Humboldt, and De Candolle-established environment and geography as two principal axes determining the distribution of groups of organisms, laying the foundations for biogeography over the subsequent 200 years, yet the relative importance of these two axes remains unresolved. Leveraging phylogenomic and global species distribution data for Mimosoid legumes, a pantropical plant clade of c. 3500 species, we show that the water availability gradient from deserts to rain forests dictates turnover of lineages within continents across the tropics. We demonstrate that 95% of speciation occurs within a precipitation niche, showing profound phylogenetic niche conservatism, and that lineage turnover boundaries coincide with isohyets of precipitation. We reveal similar patterns on different continents, implying that evolution and dispersal follow universal processes.


Asunto(s)
Biodiversidad , Ecosistema , Filogenia , Geografía , Bosque Lluvioso , Clima Tropical
3.
New Phytol ; 235(6): 2365-2377, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35901264

RESUMEN

Nitrogen-fixing symbiosis is globally important in ecosystem functioning and agriculture, yet the evolutionary history of nodulation remains the focus of considerable debate. Recent evidence suggesting a single origin of nodulation followed by massive parallel evolutionary losses raises questions about why a few lineages in the N2 -fixing clade retained nodulation and diversified as stable nodulators, while most did not. Within legumes, nodulation is restricted to the two most diverse subfamilies, Papilionoideae and Caesalpinioideae, which show stable retention of nodulation across their core clades. We characterize two nodule anatomy types across 128 species in 56 of the 152 genera of the legume subfamily Caesalpinioideae: fixation thread nodules (FTs), where nitrogen-fixing bacteroids are retained within the apoplast in modified infection threads, and symbiosomes, where rhizobia are symplastically internalized in the host cell cytoplasm within membrane-bound symbiosomes (SYMs). Using a robust phylogenomic tree based on 997 genes from 147 Caesalpinioideae genera, we show that losses of nodulation are more prevalent in lineages with FTs than those with SYMs. We propose that evolution of the symbiosome allows for a more intimate and enduring symbiosis through tighter compartmentalization of their rhizobial microsymbionts, resulting in greater evolutionary stability of nodulation across this species-rich pantropical legume clade.


Asunto(s)
Fabaceae , Rhizobium , Ecosistema , Fabaceae/genética , Nitrógeno , Fijación del Nitrógeno , Nodulación de la Raíz de la Planta/genética , Nódulos de las Raíces de las Plantas , Simbiosis
4.
PhytoKeys ; 205: 439-452, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762005

RESUMEN

Phylogenetic analyses of DNA sequence data sampling all species of Leucochloron alongside representatives of genera of the Inga and Albizia clades of the larger ingoid clade of mimosoid legumes (sensu Koenen et al. 2020) confirm the non-monophyly of the genus Leucochloron. We show that Leucochloronbolivianum is placed in the Albizia clade, while the remaining four species of Leucochloron are placed in the Inga clade, in line with previous results. To rectify this non-monophyly, L.bolivianum is segregated as the new genus, Boliviadendron, with a single species, Boliviadendronbolivianum, narrowly endemic to the interior Andean valleys of Bolivia. We illustrate this new segregate genus, present a map of its distribution and discuss the striking lack of morphological distinctions between Boliviadendron and Leucochloron, as well as the phylogenetic and morphological affinities of Boliviadendron to the genera Enterolobium and Albizia.

5.
PhytoKeys ; 205: 147-189, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762004

RESUMEN

Robust evidence from phylogenomic analyses of 997 nuclear genes has recently shown, beyond doubt, that the genus Prosopis is polyphyletic with three separate lineages, each with affinities to other genera of mimosoids: (i) Prosopisafricana is an isolated lineage placed in the grade of Plathymenia, Newtonia and Fillaeopsis that subtends the core mimosoid clade; (ii) the remaining Old World species of Prosopis form a clade that is sister to the Indo-Nepalese monospecific genus Indopiptadenia and (iii) New World Prosopis has the Namibian / Namaqualand monospecific endemic genus Xerocladia nested within it. This means that it is now clear that maintaining the unity of the genus Prosopis sensu Burkart (1976) is no longer tenable. These three distinct lineages of Prosopis species correspond directly to Burkart's (1976) sectional classification of the genus, to previously recognised genera and to the differences in types of armature that underpin Burkart's sections. Here, we address this non-monophyly by resurrecting three segregate genera - Anonychium, Neltuma and Strombocarpa and provide 57 new name combinations where necessary, while maintaining the morphologically distinctive and geographically isolated genera Xerocladia and Indopiptadenia. The genus Prosopis itself is reduced to just three species and an emended description is presented. The impacts of these name changes for a genus of such high ecological and human use importance are discussed. These impacts are mitigated by clear differences in armature which facilitate identification and by potential benefits from the deeper biological understanding brought about by recognition of these divergent lineages at generic rank. We provide an identification key to genera and present a map showing the distributions of the segregate genera, as well as drawings and photos illustrating variation in armature and fruits.

6.
PhytoKeys ; 205: 3-58, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762007

RESUMEN

Subfamily Caesalpinioideae with ca. 4,600 species in 152 genera is the second-largest subfamily of legumes (Leguminosae) and forms an ecologically and economically important group of trees, shrubs and lianas with a pantropical distribution. Despite major advances in the last few decades towards aligning genera with clades across Caesalpinioideae, generic delimitation remains in a state of considerable flux, especially across the mimosoid clade. We test the monophyly of genera across Caesalpinioideae via phylogenomic analysis of 997 nuclear genes sequenced via targeted enrichment (Hybseq) for 420 species and 147 of the 152 genera currently recognised in the subfamily. We show that 22 genera are non-monophyletic or nested in other genera and that non-monophyly is concentrated in the mimosoid clade where ca. 25% of the 90 genera are found to be non-monophyletic. We suggest two main reasons for this pervasive generic non-monophyly: (i) extensive morphological homoplasy that we document here for a handful of important traits and, particularly, the repeated evolution of distinctive fruit types that were historically emphasised in delimiting genera and (ii) this is an artefact of the lack of pantropical taxonomic syntheses and sampling in previous phylogenies and the consequent failure to identify clades that span the Old World and New World or conversely amphi-Atlantic genera that are non-monophyletic, both of which are critical for delimiting genera across this large pantropical clade. Finally, we discuss taxon delimitation in the phylogenomic era and especially how assessing patterns of gene tree conflict can provide additional insights into generic delimitation. This new phylogenomic framework provides the foundations for a series of papers reclassifying genera that are presented here in Advances in Legume Systematics (ALS) 14 Part 1, for establishing a new higher-level phylogenetic tribal and clade-based classification of Caesalpinioideae that is the focus of ALS14 Part 2 and for downstream analyses of evolutionary diversification and biogeography of this important group of legumes which are presented elsewhere.

7.
PhytoKeys ; 205: 371-400, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762009

RESUMEN

Following recent mimosoid phylogenetic and phylogenomic studies demonstrating the non-monophyly of the genus Albizia, we present a new molecular phylogeny focused on the neotropical species in the genus, with much denser taxon sampling than previous studies. Our aims were to test the monophyly of the neotropical section Arthrosamanea, resolve species relationships, and gain insights into the evolution of fruit morphology. We perform a Bayesian phylogenetic analysis of sequences of nuclear internal and external transcribed spacer regions and trace the evolution of fruit dehiscence and lomentiform pods. Our results find further support for the non-monophyly of the genus Albizia, and confirm the previously proposed segregation of Hesperalbizia, Hydrochorea, Balizia and Pseudosamanea. All species that were sampled from section Arthrosamanea form a clade that is sister to a clade composed of Jupunba, Punjuba, Balizia and Hydrochorea. We find that lomentiform fruits are independently derived from indehiscent septate fruits in both Hydrochorea and section Arthrosamanea. Our results show that morphological adaptations to hydrochory, associated with shifts into seasonally flooded habitats, have occurred several times independently in different geographic areas and different lineages within the ingoid clade. This suggests that environmental conditions have likely played a key role in the evolution of fruit types in Albizia and related genera. We resurrect the name Pseudalbizzia to accommodate the species of section Arthrosamanea, except for two species that were not sampled here but have been shown in other studies to be more closely related to other ingoid genera and we restrict the name Albizia s.s. to the species from Africa, Madagascar, Asia, Australia, and the Pacific. Twenty-one new nomenclatural combinations in Pseudalbizzia are proposed, including 16 species and 5 infraspecific varietal names. In addition to the type species Pseudalbizziaberteroana, the genus has 17 species distributed across tropical regions of the Americas, including the Caribbean. Finally, a new infrageneric classification into five sections is proposed and a distribution map of the species of Pseudalbizzia is presented.

8.
PhytoKeys ; 205: 261-278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762013

RESUMEN

Senegalia comprises 219 species distributed in tropical and subtropical regions of North and South America, Africa, Asia and Australia. Two sections are currently recognised within Senegalia and these are most readily distinguished by the differences in disposition of their cauline prickles, i.e. sect. Senegalia with prickles at or near leaf nodes and sect. Monacanthea with mostly internodal prickles. Previous phylogenetic studies, based primarily on small numbers of plastid DNA loci, found Senegalia to be monophyletic with two large subclades corresponding to the sections. Here, we present new phylogenomic evidence from 997 single-copy nuclear gene sequences for a small, but representative set of species. These new analyses show that Senegalia is non-monophyletic, but instead, forms a grade that is paraphyletic with respect to the remainder of the ingoid clade (i.e. Ingeae + Acacia s.s. + Acaciella), comprising two well-supported subclades most likely representing the same clades as found in previous phylogenetic studies of the genus and, interspersed between these, a third, moderately supported clade, comprising the genera Mariosousa, Pseudosenegalia and Parasenegalia. In marked contrast to the nuclear phylogeny, the two Senegalia clades are sister groups in the plastid phylogeny, based on analyses of 72 chloroplast genes, rendering the genus monophyletic, based on plastid data alone. We discuss this new evidence that Senegalia is non-monophyletic in relation to the marked cytonuclear discordance, high gene tree conflict and lack of resolution across this senegalioid grade and review the consistency of the key morphological characters distinguishing the two sections of Senegalia. We conclude that it is likely that Senegalia will need to be split into two (or possibly more) genera: a re-circumscribed Senegalia s.s. that corresponds to the existing Senegaliasect.Senegalia plus the S.ataxacantha group (Senegaliasect.Monacanthea s.s.; future studies may show that this group warrants generic status) and a new genus corresponding to the remainder of sect. Monacanthea (here designated as Senegaliasect.Monacanthea p.p.). However, re-delimiting Senegalia now would be premature given that the key morphological characters are not fully congruent with the two sections and pending denser phylogenetic sampling of taxa. A judiciously selected list of critical taxa is presented to facilitate future phylogenomic studies. Finally, we discuss the identity of Albizialeonardii, which is also placed in this senegalioid grade in these new phylogenomic analyses and place it in synonymy with Parasenegaliavogeliana.

9.
PhytoKeys ; 205: 1-2, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762014
10.
PhytoKeys ; 205: 191-201, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762018

RESUMEN

Recent results have demonstrated that the genus Desmanthus is non-monophyletic because the genus Kanaloa is nested within it, with a single species, Desmanthusbalsensis placed as sister to the clade comprising Kanaloa plus the remaining species of Desmanthus. Here we transfer D.balsensis to a new segregate genus Mezcala, discuss the morphological features supporting this new genus, present a key to distinguish Mezcala from closely related genera in the Leucaena subclade, and provide a distribution map of M.balsensis.

11.
Syst Biol ; 70(3): 508-526, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32483631

RESUMEN

The consequences of the Cretaceous-Paleogene (K-Pg) boundary (KPB) mass extinction for the evolution of plant diversity remain poorly understood, even though evolutionary turnover of plant lineages at the KPB is central to understanding assembly of the Cenozoic biota. The apparent concentration of whole genome duplication (WGD) events around the KPB may have played a role in survival and subsequent diversification of plant lineages. To gain new insights into the origins of Cenozoic biodiversity, we examine the origin and early evolution of the globally diverse legume family (Leguminosae or Fabaceae). Legumes are ecologically (co-)dominant across many vegetation types, and the fossil record suggests that they rose to such prominence after the KPB in parallel with several well-studied animal clades including Placentalia and Neoaves. Furthermore, multiple WGD events are hypothesized to have occurred early in legume evolution. Using a recently inferred phylogenomic framework, we investigate the placement of WGDs during early legume evolution using gene tree reconciliation methods, gene count data and phylogenetic supernetwork reconstruction. Using 20 fossil calibrations we estimate a revised timeline of legume evolution based on 36 nuclear genes selected as informative and evolving in an approximately clock-like fashion. To establish the timing of WGDs we also date duplication nodes in gene trees. Results suggest either a pan-legume WGD event on the stem lineage of the family, or an allopolyploid event involving (some of) the earliest lineages within the crown group, with additional nested WGDs subtending subfamilies Papilionoideae and Detarioideae. Gene tree reconciliation methods that do not account for allopolyploidy may be misleading in inferring an earlier WGD event at the time of divergence of the two parental lineages of the polyploid, suggesting that the allopolyploid scenario is more likely. We show that the crown age of the legumes dates to the Maastrichtian or early Paleocene and that, apart from the Detarioideae WGD, paleopolyploidy occurred close to the KPB. We conclude that the early evolution of the legumes followed a complex history, in which multiple auto- and/or allopolyploidy events coincided with rapid diversification and in association with the mass extinction event at the KPB, ultimately underpinning the evolutionary success of the Leguminosae in the Cenozoic. [Allopolyploidy; Cretaceous-Paleogene (K-Pg) boundary; Fabaceae, Leguminosae; paleopolyploidy; phylogenomics; whole genome duplication events].


Asunto(s)
Extinción Biológica , Fabaceae , Animales , Evolución Biológica , Evolución Molecular , Fabaceae/genética , Fósiles , Filogenia , Poliploidía
12.
Am J Bot ; 107(12): 1710-1735, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33253423

RESUMEN

PREMISE: Targeted enrichment methods facilitate sequencing of hundreds of nuclear loci to enhance phylogenetic resolution and elucidate why some parts of the "tree of life" are difficult (if not impossible) to resolve. The mimosoid legumes are a prominent pantropical clade of ~3300 species of woody angiosperms for which previous phylogenies have shown extensive lack of resolution, especially among the species-rich and taxonomically challenging ingoids. METHODS: We generated transcriptomes to select low-copy nuclear genes, enrich these via hybrid capture for representative species of most mimosoid genera, and analyze the resulting data using de novo assembly and various phylogenomic tools for species tree inference. We also evaluate gene tree support and conflict for key internodes and use phylogenetic network analysis to investigate phylogenetic signal across the ingoids. RESULTS: Our selection of 964 nuclear genes greatly improves phylogenetic resolution across the mimosoid phylogeny and shows that the ingoid clade can be resolved into several well-supported clades. However, nearly all loci show lack of phylogenetic signal for some of the deeper internodes within the ingoids. CONCLUSIONS: Lack of resolution in the ingoid clade is most likely the result of hyperfast diversification, potentially causing a hard polytomy of six or seven lineages. The gene set for targeted sequencing presented here offers great potential to further enhance the phylogeny of mimosoids and the wider Caesalpinioideae with denser taxon sampling, to provide a framework for taxonomic reclassification, and to study the ingoid radiation.


Asunto(s)
Fabaceae , Radiación , Evolución Biológica , Núcleo Celular/genética , Fabaceae/genética , Filogenia
13.
Ecol Evol ; 10(12): 6163-6182, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32607221

RESUMEN

Understanding how and why rates of evolutionary diversification vary is a key issue in evolutionary biology, ecology, and biogeography. Evolutionary rates are the net result of interacting processes summarized under concepts such as adaptive radiation and evolutionary stasis. Here, we review the central concepts in the evolutionary diversification literature and synthesize these into a simple, general framework for studying rates of diversification and quantifying their underlying dynamics, which can be applied across clades and regions, and across spatial and temporal scales. Our framework describes the diversification rate (d) as a function of the abiotic environment (a), the biotic environment (b), and clade-specific phenotypes or traits (c); thus, d ~ a,b,c. We refer to the four components (a-d) and their interactions collectively as the "Evolutionary Arena." We outline analytical approaches to this framework and present a case study on conifers, for which we parameterize the general model. We also discuss three conceptual examples: the Lupinus radiation in the Andes in the context of emerging ecological opportunity and fluctuating connectivity due to climatic oscillations; oceanic island radiations in the context of island formation and erosion; and biotically driven radiations of the Mediterranean orchid genus Ophrys. The results of the conifer case study are consistent with the long-standing scenario that low competition and high rates of niche evolution promote diversification. The conceptual examples illustrate how using the synthetic Evolutionary Arena framework helps to identify and structure future directions for research on evolutionary radiations. In this way, the Evolutionary Arena framework promotes a more general understanding of variation in evolutionary rates by making quantitative results comparable between case studies, thereby allowing new syntheses of evolutionary and ecological processes to emerge.

14.
New Phytol ; 225(3): 1355-1369, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31665814

RESUMEN

Phylogenomics is increasingly used to infer deep-branching relationships while revealing the complexity of evolutionary processes such as incomplete lineage sorting, hybridization/introgression and polyploidization. We investigate the deep-branching relationships among subfamilies of the Leguminosae (or Fabaceae), the third largest angiosperm family. Despite their ecological and economic importance, a robust phylogenetic framework for legumes based on genome-scale sequence data is lacking. We generated alignments of 72 chloroplast genes and 7621 homologous nuclear-encoded proteins, for 157 and 76 taxa, respectively. We analysed these with maximum likelihood, Bayesian inference, and a multispecies coalescent summary method, and evaluated support for alternative topologies across gene trees. We resolve the deepest divergences in the legume phylogeny despite lack of phylogenetic signal across all chloroplast genes and the majority of nuclear genes. Strongly supported conflict in the remainder of nuclear genes is suggestive of incomplete lineage sorting. All six subfamilies originated nearly simultaneously, suggesting that the prevailing view of some subfamilies as 'basal' or 'early-diverging' with respect to others should be abandoned, which has important implications for understanding the evolution of legume diversity and traits. Our study highlights the limits of phylogenetic resolution in relation to rapid successive speciation.


Asunto(s)
Evolución Molecular , Fabaceae/clasificación , Fabaceae/genética , Variación Genética , Genómica , Filogenia , Secuencia de Bases , Teorema de Bayes , Genes del Cloroplasto , Funciones de Verosimilitud , Especificidad de la Especie
15.
New Phytol ; 224(1): 518-531, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30883788

RESUMEN

The evolution of secondary (insular) woodiness and the rapid disparification of plant growth forms associated with island radiations show intriguing parallels between oceanic islands and tropical alpine sky islands. However, the evolutionary significance of these phenomena remains poorly understood and the focus of debate. We explore the evolutionary dynamics of species diversification and trait disparification across evolutionary radiations in contrasting island systems compared with their nonisland relatives. We estimate rates of species diversification, growth form evolution and phenotypic space saturation for the classical oceanic island plant radiations - the Hawaiian silverswords and Macaronesian Echium - and the well-studied sky island radiations of Lupinus and Hypericum in the Andes. We show that secondary woodiness is associated with dispersal to islands and with accelerated rates of species diversification, accelerated disparification of plant growth forms and occupancy of greater phenotypic trait space for island clades than their nonisland relatives, on both oceanic and sky islands. We conclude that secondary woodiness is a prerequisite that could act as a key innovation, manifest as the potential to occupy greater trait space, for plant radiations on island systems in general, further emphasizing the importance of combinations of clade-specific traits and ecological opportunities in driving adaptive radiations.


Asunto(s)
Evolución Biológica , Islas , Madera/fisiología , Biodiversidad , Fenotipo , Desarrollo de la Planta , Plantas/anatomía & histología , Especificidad de la Especie
16.
New Phytol ; 222(4): 1994-2008, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30536385

RESUMEN

The extent to which phylogenetic biome conservatism vs biome shifting determines global patterns of biodiversity remains poorly understood. To address this question, we investigated the biogeography and trajectories of biome and growth form evolution across the Caesalpinia Group (Leguminosae), a clade of 225 species of trees, shrubs and lianas distributed across the Rainforest, Succulent, Temperate and Savanna Biomes. We focused especially on the little-known Succulent Biome, an assemblage of succulent-rich, grass-poor, seasonally dry tropical vegetation distributed disjunctly across the Neotropics, Africa, Arabia and Madagascar. We reconstructed a time-calibrated phylogeny, assembled species occurrence data and assigned species to areas, biomes and growth forms. These data are used to estimate the frequency of transcontinental disjunctions, biome shifts and evolutionary transitions between growth forms and test for phylogenetic biome conservatism and correlated evolution of growth forms and biome shifts. We uncovered a pattern of strong phylogenetic Succulent Biome conservatism. We showed that transcontinental disjunctions confined within the Succulent Biome are frequent and that biome shifts to the Savanna, Rainforest and Temperate Biomes are infrequent and closely associated with shifts in plant growth forms. Our results suggest that the Succulent Biome comprises an ecologically constrained evolutionary arena spanning large geographical disjunctions across the tropics.


Asunto(s)
Caesalpinia/clasificación , Ecosistema , Filogenia , Clima Tropical , Teorema de Bayes , Biodiversidad , Geografía , Desarrollo de la Planta , Factores de Tiempo
17.
Genome Biol Evol ; 10(9): 2501-2517, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30137422

RESUMEN

Reconstructions of vascular plant mitochondrial genomes (mt-genomes) are notoriously complicated by rampant recombination that has resulted in comparatively few plant mt-genomes being available. The dearth of plant mitochondrial resources has limited our understanding of mt-genome structural diversity, complex patterns of RNA editing, and the origins of novel mt-genome elements. Here, we use an efficient long read (PacBio) iterative assembly pipeline to generate mt-genome assemblies for Leucaena trichandra (Leguminosae: Caesalpinioideae: mimosoid clade), providing the first assessment of non-papilionoid legume mt-genome content and structure to date. The efficiency of the assembly approach facilitated the exploration of alternative structures that are common place among plant mitochondrial genomes. A compact version (729 kbp) of the recovered assemblies was used to investigate sources of mt-genome size variation among legumes and mt-genome sequence similarity to the legume associated root holoparasite Lophophytum. The genome and an associated suite of transcriptome data from select species of Leucaena permitted an in-depth exploration of RNA editing in a diverse clade of closely related species that includes hybrid lineages. RNA editing in the allotetraploid, Leucaena leucocephala, is consistent with co-option of nearly equal maternal and paternal C-to-U edit components, generating novel combinations of RNA edited sites. A preliminary investigation of L. leucocephala C-to-U edit frequencies identified the potential for a hybrid to generate unique pools of alleles from parental variation through edit frequencies shared with one parental lineage, those intermediate between parents, and transgressive patterns.


Asunto(s)
Fabaceae/genética , Genoma Mitocondrial , Edición de ARN , ARN Mitocondrial/genética , ARN de Planta/genética , Transferencia de Gen Horizontal , Secuencias Repetitivas de Ácidos Nucleicos , Secuencias Repetidas en Tándem , Tetraploidía
19.
Am J Bot ; 103(9): 1592-606, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27638916

RESUMEN

PREMISE OF THE STUDY: The Andean highlands are a hotspot of domestication, yet our understanding of the origins of early Andean agriculture remains fragmentary. Key questions of where, when, how many times, and from what progenitors many Andean crops were domesticated remain unanswered. The Andean lupine crop tarwi (Lupinus mutabilis) is a regionally important pulse crop with exceptionally high seed protein and oil content and is the focus of modern breeding efforts, but its origins remain obscure. METHODS: A large genome-wide DNA polymorphism data set was generated using nextRADseq to infer relationships among more than 200 accessions of Andean Lupinus species, including 24 accessions of L. mutabilis and close relatives. Phylogenetic and demographic analyses were used to identify the likely progenitor of tarwi and elucidate the area and timing of domestication in combination with archaeological evidence. KEY RESULTS: We infer that tarwi was domesticated once in northern Peru, most likely in the Cajamarca region within, or adjacent to the extant distribution of L. piurensis, which is the most likely wild progenitor. Demographic analyses suggest that tarwi split from L. piurensis around 2600 BP and suffered a classical domestication bottleneck. The earliest unequivocal archaeological evidence of domesticated tarwi seeds is from the Mantaro Valley, central Peru ca. 1800 BP. CONCLUSIONS: A single origin of tarwi from L. piurensis in northern Peru provides a robust working hypothesis for the domestication of this regionally important crop and is one of the first clear-cut examples of a crop originating in the highlands of northern Peru.


Asunto(s)
Productos Agrícolas/genética , ADN de Plantas/genética , Domesticación , Lupinus/genética , Perú , Filogenia , Análisis de Secuencia de ADN
20.
Nat Commun ; 7: 12384, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27498896

RESUMEN

The evolutionary processes that drive rapid species diversification are poorly understood. In particular, it is unclear whether Darwinian adaptation or non-adaptive processes are the primary drivers of explosive species diversifications. Here we show that repeated rapid radiations within New World lupins (Lupinus, Leguminosae) were underpinned by a major increase in the frequency of adaptation acting on coding and regulatory changes genome-wide. This contrasts with far less frequent adaptation in genomes of slowly diversifying lupins and all other plant genera analysed. Furthermore, widespread shifts in optimal gene expression coincided with shifts to high rates of diversification and evolution of perenniality, a putative key adaptation trait thought to have triggered the evolutionary radiations in New World lupins. Our results reconcile long-standing debate about the relative importance of protein-coding and regulatory evolution, and represent the first unambiguous evidence for the rapid onset of lineage- and genome-wide accelerated Darwinian evolution during rapid species diversification.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Lupinus/fisiología , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos , Sistemas de Lectura Abierta/genética , Filogenia , Selección Genética , Análisis de Secuencia de ARN , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA