Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 301(1): C195-203, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21508334

RESUMEN

Myostatin, a member of the transforming growth factor-ß superfamily, has been implicated in the potent negative regulation of myogenesis in murine models. However, little is known about the mechanism(s) through which human myostatin negatively regulates human skeletal muscle growth. Using human primary myoblasts and recombinant human myostatin protein, we show here that myostatin blocks human myoblast proliferation by regulating cell cycle progression through targeted upregulation of p21. We further show that myostatin regulates myogenic differentiation through the inhibition of key myogenic regulatory factors including MyoD, via canonical Smad signaling. In addition, we have for the first time demonstrated the capability of myostatin to regulate the Notch signaling pathway during inhibition of human myoblast differentiation. Treatment with myostatin results in the upregulation of Hes1, Hes5, and Hey1 expression during differentiation; moreover, when we interfere with Notch signaling, through treatment with the γ-secretase inhibitor L-685,458, we find enhanced myotube formation despite the presence of excess myostatin. Therefore, blockade of the Notch pathway relieves myostatin repression of differentiation, and myostatin upregulates Notch downstream target genes. Immunoprecipitation studies demonstrate that myostatin treatment of myoblasts results in enhanced association of Notch1-intracellular domain with Smad3, providing an additional mechanism through which myostatin targets and represses the activity of the myogenic regulatory factor MyoD. On the basis of these results, we suggest that myostatin function and mechanism of action are very well conserved between species, and that myostatin regulation of postnatal myogenesis involves interactions with numerous downstream signaling mediators, including the Notch pathway.


Asunto(s)
Diferenciación Celular , Músculo Esquelético/crecimiento & desarrollo , Mioblastos/citología , Mioblastos/metabolismo , Miostatina/metabolismo , Adolescente , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carbamatos/farmacología , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Células Cultivadas , Niño , Proteínas de Unión al ADN/metabolismo , Dipéptidos/farmacología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Inmunoprecipitación , Ratones , Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteína MioD/metabolismo , Factores Reguladores Miogénicos/metabolismo , Reacción en Cadena de la Polimerasa , Receptores Notch/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Factor de Transcripción HES-1 , Factor de Crecimiento Transformador beta , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA