Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Steroids ; : 109498, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147006

RESUMEN

Cholesteryl esters (CE) are sterols comprising various fatty acyl chains attached to a cholesterol hydroxyl moiety. CEs are often considered plasma biomarkers of liver function; however, their absolute concentrations in the plasma of Japanese preadolescents have not been well explored. This study aimed to determine the plasma CE levels in Japanese preadolescents of different sexes, ages, and body weights living in Hokkaido, Japan using targeted liquid chromatography/tandem mass spectrometry. The analysis was performed on the non-fasting plasma of preadolescents aged 9-12 years (n = 339 healthy volunteers; 178 boys and 161 girls) from Sapporo, Hokkaido, Japan. The analysis results showed that the total CE levels in boys and girls were 871 ±â€¯153 and 862 ±â€¯96 pmol/µL, respectively. CE 18:2 (41 ±â€¯2.9 %) was found to be the most abundant species followed by CE 18:1 (16 ±â€¯1.5 %) and CE 16:0 (13 ±â€¯1.1 %). The ω-3 fatty acid-containing CEs such as CE 18:3 and CE 20:5 were significantly lower in girls than in boys. Despite the different ages, CEs were tightly regulated in the plasma of children's, and the total CEs ranged between 844 and 906 pmol/µL in boys and 824 and 875 pmol/µL in girls. The participants were further classified into three groups based on their body mass index underweight (n = 237), normal weight (n = 94), and overweight (n = 8). Most of the quantified CEs were accumulated in the overweight group. Interestingly, CE 18:3 was significantly upregulated in the overweight group compared to that in the normal range, and the area under the receiver operating characteristic curve was 0.73, suggesting that it could be a possible marker for obesity. This study marks the initial investigation of absolute CE levels in the plasma of children and can help elucidate the relationship between CEs and childhood obesity.

2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(8): 159542, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39097080

RESUMEN

Obesity, a global epidemic linked to around 4 million deaths yearly, arises from lifestyle imbalances impacting inflammation-related conditions like non-alcoholic fatty liver disease and gut dysbiosis. But the long-term effects of inflammation caused by lifestyle-related dietary changes remain unexplained. In this study, we used young male C57Bl/6 mice which were fed either an obesogenic diet (OBD) or a control diet (CON) for six months. Later, a group of mice from the OBD group were intervened to the CON diet (OBD-R) for four months, while another OBD group remained on the OBD diet. The OBD induced distinct changes in gut microbial, notably elevating Firmicutes and Actinobacteria, while reducing Bacteroidetes and Tenericutes. OBD-R restored microbial abundance like CON. Analyzing liver, plasma, and fecal samples revealed OBD-induced alterations in various structural and bioactive lipids, which were normalized to CON in the OBD-R, showcasing lipid metabolism flexibility and adaptability to dietary shifts. OBD increased omega 6 fatty acid, Arachidonic Acid (AA) and decreased omega 3-derived lipid mediators in the OBD mimicking non-alcoholic fatty liver disease thus impacting inflammation-resolution pathways. OBD also induced hepatic inflammation via increasing alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and proinflammatory markers CCR2, TNF-α, and IL-1ß in liver. Transitioning from OBD to CON mitigated inflammatory gene expression and restored lipid and cholesterol networks. This study underscores the intricate interplay between lifestyle-driven dietary changes, gut microbiota, lipid metabolism, and liver health. Notably, it suggests that shift from an OBD (omega-6 enriched) to CON partially alleviates signs of chronic inflammation during aging. Understanding these microbial, lipidomic, and hepatic inflammatory dynamics reveals potential therapeutic avenues for metabolic disorders induced by diet, emphasizing the pivotal role of diet in sustaining metabolic health.

3.
Sci Rep ; 14(1): 18042, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098953

RESUMEN

Obstructed urine flow is known to cause structural and functional kidney damage leading to renal fibrosis. However, limited information is available on the change in kidney lipids during urinary tract obstruction. In this study, we investigated the change in lipidome in a mouse model with unilateral ureteral obstruction (UUO). The establishment of the UUO model was confirmed by histopathological examination using transmission electron microscopy. Untargeted liquid chromatography/mass spectrometry was carried out over a time course of 4 and 7 days. Compared to the sham control, the UUO kidney at 7 days showed dilatation of the renal tubule with loss of brush borders and thickening of the capillary endothelium. In the kidney lipidomes obtained from the UUO 7 days group compared to the control, a significant decrease of ceramide, sphingomyelin, phosphatidylcholine, lysophospholipids, and phosphatidylethanolamine was observed, whereas cholesteryl esters, free fatty acids, phosphatidylglycerol, and cardiolipins were significantly increased. The present study revealed the disturbed lipid metabolism in the UUO model, which may provide a clue to potential lipid pathways and therapeutic targets for the early stage of renal fibrosis.


Asunto(s)
Modelos Animales de Enfermedad , Riñón , Metabolismo de los Lípidos , Lipidómica , Obstrucción Ureteral , Animales , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología , Lipidómica/métodos , Ratones , Riñón/metabolismo , Riñón/patología , Masculino , Fibrosis , Ratones Endogámicos C57BL
4.
J Atheroscler Thromb ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960632

RESUMEN

AIM: This study investigated the associations of the surface charge of low-density lipoprotein (LDL) with the serum LDL-cholesterol and atherosclerosis levels in a community-based Japanese population. METHODS: The study had a cross-sectional design and included 409 community residents aged 35-79 years who did not take medications for dyslipidemia. The potential electric charge of LDL and the zeta potential, which indicate the surface charge of LDL, were measured by laser Doppler microelectrophoresis. The correlations of the zeta potential of LDL (-mV) with the serum LDL-cholesterol levels (mg/dL), cardio-ankle vascular index (CAVI), and serum high-sensitivity C-reactive protein (hsCRP) levels (log-transformed values, mg/L) were examined using Pearson's correlation coefficient (r). Linear regression models were constructed to examine these associations after adjusting for potential confounding factors. RESULTS: A total of 201 subjects with correctly stored samples were included in the primary analysis for zeta potential measurement. An inverse correlation was observed between the LDL zeta potential and the serum LDL-cholesterol levels (r=-0.20; p=0.004). This inverse association was observed after adjusting for sex, age, dietary cholesterol intake, smoking status, alcohol intake, body mass index, and the serum levels of the major classes of free fatty acids (standardized ß=-6.94; p=0.005). However, the zeta potential of LDL showed almost no association with CAVI or the serum hsCRP levels. Similar patterns were observed in the 208 subjects with compromised samples as well as all the original 409 subjects. CONCLUSION: A higher electronegative surface charge of LDL was associated with lower serum LDL-cholesterol levels in the general Japanese population.

5.
Foods ; 13(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928818

RESUMEN

Herbal teas are blends of leaves, seeds, fruits, and flowers from various plants that provide relaxation, anti-inflammatory benefits, and immune system support for conditions such as diabetes and asthma. Despite their health benefits, comprehensive lipidomic data on herbal teas are limited in the literature. We used non-targeted liquid chromatography-linear ion trap orbitrap mass spectrometry to identify and correlate the lipid species in the following six herbal tea samples: fennel, ginger, juniper, lemon peel, orange peel, and rosehip. A total of 204 lipid molecular species were identified, and multivariate analysis revealed a significant difference between lipid species in herbal teas. Saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs) are significantly abundant in juniper, including ω-3 and ω-6 fatty acids, followed by fennel. Cluster correlations showed that ginger contained mainly sphingolipids and lysophospholipids, whereas fennel was rich in phospholipids. No significant variations in the content of triacylglycerols were observed in any of the herbal teas analyzed. The ratio of PUFAs to SFAs in herbal teas showed that orange peel had the highest ratio, followed by lemon peel and fennel, indicating their potential health benefits. In addition, using high-resolution mass spectrometry, various lipids such as fatty acid esters of hydroxy fatty acids and N-acyl-lysophosphatidylethanolamines were identified and characterized in these herbal teas. This study provides a comprehensive lipid analysis and detailed characterization of lipids in six herbal teas, highlighting their plausible applications in the field of nutrition and various food industries for the development of functional foods.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38870605

RESUMEN

The purpose of this study is to explore the plasma short-chain fatty acid (SCFA) concentrations in 9-12-year-old Japanese children collected in the Hokkaido study, focusing on how factors such as age, sex, and body mass index (BMI) correlate with these levels. The Hokkaido Study on Children's Health is an ongoing longitudinal study since 2002, encompassing 20,926 pregnant women in Hokkaido Prefecture, Japan, between 2003 and 2012. We contacted 1881 children aged 9-12 born between April 2006 and January 2010, and 342 non-fasting plasma samples (boys = 181, girls = 161) were obtained from this cohort, alongside assessments of their height and weight. Plasma SCFA concentrations were determined using N,N-dimethylethylenediamine derivatization method coupled with liquid chromatography-mass spectrometry. Ethyl acetate was used to extract SCFAs from plasma, and the recovery ranged from 83 % to 108 %. Our findings indicate that acetic acid had the highest concentration across all age groups and sexes. The concentrations of butyric acid, valeric acid, and hexanoic acid increased with age, peaking in 12-year-old children. Conversely, the level of 4-hydroxy valeric acid showed a decreasing trend with increasing age groups. This study also explored the correlation between BMI and SCFA concentrations, comparatively higher level of propionic acid was observed in the overweight group. The results obtained in this study enhance our understanding of the role of SCFAs in the growth and development of children and provide a foundation for future nutritional intervention and health promotion strategies.


Asunto(s)
Índice de Masa Corporal , Ácidos Grasos Volátiles , Humanos , Niño , Femenino , Ácidos Grasos Volátiles/sangre , Masculino , Japón , Cromatografía Liquida/métodos , Estudios Longitudinales , Espectrometría de Masas/métodos
7.
Antioxidants (Basel) ; 13(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38790618

RESUMEN

During our search for natural resources that can inhibit lipid droplet accumulation (LDA) and potentially prevent metabolic dysfunction-associated fatty liver disease (MAFLD) and its progressive stages, such as metabolic dysfunction-associated steatohepatitis (MASH), eight bean extracts (BE1-BE8) were tested for their ability to inhibit lipid accumulation and oxidation in hepatocytes. Substantial inhibitory effects on LDA with bean extracts (BEs) BE2, BE4, BE5, and BE8 were demonstrated. An advanced lipidomic approach was used to quantify the accumulation and inhibition of intracellular triacylglycerol (TAG) and its oxidized species, TAG hydroperoxide (TGOOH), in hepatocytes under fatty acid-loading conditions. The results show that the antioxidants BE2 and BE8 are potential candidates for regulating TAG and TGOOH accumulation in fatty acid-induced lipid droplets (LDs). This study suggests that bean-based foods inhibit LDs formation by decreasing intracellular lipids and lipid hydroperoxides in the hepatocytes. The metabolic profiling of BEs revealed that BE2 and BE8 contained polyphenolic compounds. These may be potential resources for the development of functional foods and drug discovery targeting MAFLD/MASH.

8.
Ann Clin Biochem ; : 45632241259658, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38779860

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease is classified into simple steatosis (SS) and non-alcoholic steatohepatitis (NASH) according to histological findings from liver biopsies. Phosphatidylcholine (PC), the main component of phospholipids in serum lipoproteins, is easily oxidized to phosphatidylcholine hydroperoxide (PC-OOH). Although a lipid composition in the low-density lipoproteins (LDL) from patients with NASH could be abnormal, it remains unclear. Here, to better understand the characteristics of lipids in the LDL from NASH and SS, we compared the composition of PC and PC-OOH species in LDL particles (LDL-PC, LDL-PCOOH) from these patients, then clarified the association between these lipids and NASH severity. METHODS: The serum samples from patients with NASH (female, n = 9) and SS (female, n = 4; male, n = 2) were used for isolation of LDL. Total lipids were extracted from isolated LDL, and the species of PC and PC-OOH were measured using liquid chromatography-mass spectrometry/mass spectrometry. RESULTS: The sum of LDL-PC and the sum of LDL-PCOOH were significantly higher in NASH than in SS. Several LDL-PC (PC 32:0, 32:1, 32:2, 34:3, 36:2, sum of PC with saturated fatty acyl chains and sum of LDL-PC with polyunsaturated fatty acyl chains) and several LDL-PCOOH (34:2, 36:2, 36:3 and total) were increased significantly with increasing fibrosis score. In particular, a series of LDL-PCOOH were more reflective of the severity of fibrosis score. CONCLUSIONS: LDL-PC and LDL-PCOOH species were strongly correlated with the fibrosis score in NASH, which suggests that abnormal LDL is involved in the development of liver fibrosis.

10.
Analyst ; 149(12): 3293-3301, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38713069

RESUMEN

Sphingomyelin synthase (SMS) is a sphingolipid-metabolizing enzyme involved in the de novo synthesis of sphingomyelin (SM) from ceramide (Cer). Recent studies have indicated that SMS is a key therapeutic target for metabolic diseases such as fatty liver, type 2 diabetes, atherosclerosis, and colorectal cancer. However, very few SMS inhibitors have been identified because of the limited sensitivity and selectivity of the current fluorescence-based screening assay. In this study, we developed a simple cell-based assay coupled with liquid chromatography/tandem mass spectrometry (LC-MS/MS) to screen for SMS inhibitors. HeLa cells stably expressing SMS1 or SMS2 were used for the screening. A non-fluorescent unnatural C6-Cer was used as a substrate for SMS to produce C6-SM. C6-Cer and C6-SM levels in the cells were monitored and quantified using LC-MS/MS. The activity of ginkgolic acid C15:1 (GA), a known SMS inhibitor, was measured. GA had half-maximal inhibitory concentrations of 5.5 µM and 3.6 µM for SMS1 and SMS2, respectively. To validate these findings, hSMS1 and hSMS2 proteins were optimized for molecular docking studies. In silico analyses were conducted to assess the interaction of GA with SMS1 and SMS2, and its binding affinity. This study offers an analytical approach for screening novel SMS inhibitors and provides in silico support for the experimental findings.


Asunto(s)
Espectrometría de Masas en Tándem , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Humanos , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/antagonistas & inhibidores , Células HeLa , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/farmacología , Proteínas del Tejido Nervioso/metabolismo , Proteínas de la Membrana
11.
ACS Omega ; 9(14): 16044-16054, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38617688

RESUMEN

Consumption of alcohol has widespread effects on the human body. The organs that are most significantly impacted are the liver and digestive system. When alcohol is consumed, it is absorbed in the intestines and processed by the liver. However, excessive alcohol use may affect gut epithelial integrity, microbiome composition, and lipid metabolism. Despite past studies investigating the effect of ethanol on hepatic lipid metabolism, the focus on colonic lipid metabolism has not been well explored. In this study, we investigated the sex-specific effect of ethanol on the colonic content lipidome in a mouse model using nontargeted liquid chromatography-mass spectrometry. Comprehensive lipidome analysis of colonic flush samples was performed using ethanol-fed (EF) and pair-fed (PF) mice of each sex. Partial least-squares discriminant analysis revealed that ethanol altered colonic lipid composition largely in male mice compared with female mice. A significant increase in free fatty acids, ceramides, and hexosylceramides and decreased phosphatidylglycerols (PG) was observed in the EF group compared to the PF group in male mice. Phosphatidylethanolamine (PE) levels were increased significantly in the EF group of both sexes compared to the PF group. The volcanic plot shows that PG (O-15:1/15:0) and PE (O-18:2/15:0) are common markers that are increased in both sexes of the EF group. In addition, decreased fatty acid esters of hydroxy fatty acids (FAHFA) were observed specifically in the EF group of female mice. Overall, a significant variation in the mice colonic content lipidome between the EF and PF groups was observed. Target pathways, such as sphingolipid metabolism in males, FAHFA in females, and PE metabolism in both sexes, were suggested. This study provides new insight into the sex-dependent lipid change associated with alcohol-induced gut-microbiota dysfunction and its potential health impacts.

12.
Food Res Int ; 184: 114253, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609231

RESUMEN

Sea cucumbers are a rich source of bioactive compounds and are gaining popularity as nutrient-rich seafood. They are consumed as a whole organism in Pacific regions. However, limited data are available on the comparison of their lipid composition and nutritional value. In this study, untargeted liquid chromatography/mass spectrometry was applied to comprehensively profile lipids in the skin, meat, and intestinal contents of three color-distinct edible sea cucumbers. Multivariate principal component analysis revealed that the lipid composition of the intestinal contents of red, black, and blue sea cucumbers differs from that of skin, and meats. Polyunsaturated fatty acids (PUFAs) are abundant in the intestinal contents, followed by meats of sea cucumber. Lipid nutritional quality assessments based on fatty acid composition revealed a high P:S ratio, low index of atherogenicity, and high health promotion indices for the intestinal contents of red sea cucumber, suggesting its potential health benefits. In addition, hierarchical cluster analysis revealed that the intestinal contents of sea cucumbers were relatively high in PUFA-enriched phospholipids and lysophospholipids. Ceramides are abundant in black skin, blue meat, and red intestinal content samples. Overall, this study provides the first insights into a comprehensive regio-specific profile of the lipid content of sea cucumbers and their potential use as a source of lipid nutrients in food and nutraceuticals.


Asunto(s)
Pepinos de Mar , Animales , Ceramidas , Análisis por Conglomerados , Suplementos Dietéticos , Ácidos Grasos
13.
Food Chem ; 447: 138941, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38461726

RESUMEN

Herbal teas and beverages have gained global attention because they are rich in natural bioactive compounds, which are known to have diverse biological effects, including antioxidant and anticarcinogenic properties. However, the lipidomic profiles of herbal teas remain unclear. In this study, we applied an untargeted lipidomics approach using high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry to comprehensively profile, compare, and identify unknown lipids in four herbal teas: dokudami, kumazasa, sugina, and yomogi. A total of 341 molecular species from five major classes of lipids were identified. Multivariate principal component analysis revealed distinct lipid compositions for each of the herbs. The fatty acid α-linolenic acid (FA 18:3) was found to be abundant in kumazasa, whereas arachidonic acid (FA 20:4) was the most abundant in sugina. Interestingly, novel lipids were discovered for the first time in plants; specifically, short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs) with 4-hydroxy phenyl nonanoic acid as the structural core. This study provides insight into the lipidomic diversity and potential bioactive lipid components of herbal teas, offering a foundation for further research into their health-promoting properties and biological significance.


Asunto(s)
Tés de Hierbas , Tés de Hierbas/análisis , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Líquida con Espectrometría de Masas , Bebidas/análisis , Lipidómica/métodos
14.
Nutrients ; 16(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38398832

RESUMEN

Targeting mitochondrial function is a promising approach to prevent metabolic dysfunction-associated steatotic liver disease (MASLD). Cardiolipin (CL) is a unique lipid comprising four fatty acyl chains localized in the mitochondrial inner membrane. CL is a crucial phospholipid in mitochondrial function, and MASLD exhibits CL-related anomalies. Kaempferol (KMP), a natural flavonoid, has hepatoprotective and mitochondrial function-improving effects; however, its influence on CL metabolism in fatty liver conditions is unknown. In this study, we investigated the effects of KMP on mitochondrial function, focusing on CL metabolism in a fatty liver cell model (linoleic-acid-loaded C3A cell). KMP promoted mitochondrial respiratory functions such as ATP production, basal respiration, and proton leak. KMP also increased the gene expression levels of CPT1A and PPARGC1A, which are involved in mitochondrial ß-oxidation. Comprehensive quantification of CL species and related molecules via liquid chromatography/mass spectrometry showed that KMP increased not only total CL content but also CL72:8, which strongly favors ATP production. Furthermore, KMP improved the monolysocardiolipin (MLCL)/CL ratio, an indicator of mitochondrial function. Our results suggest that KMP promotes energy production in a fatty liver cell model, associated with improvement in mitochondrial CL profile, and can serve as a potential nutrition factor in preventing MASLD.


Asunto(s)
Cardiolipinas , Hígado Graso , Humanos , Cardiolipinas/metabolismo , Quempferoles/farmacología , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Adenosina Trifosfato
15.
J Lipid Res ; 65(3): 100508, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38280458

RESUMEN

Lipid transport is an essential cellular process with importance to human health, disease development, and therapeutic strategies. Type IV P-type ATPases (P4-ATPases) have been identified as membrane lipid flippases by utilizing nitrobenzoxadiazole (NBD)-labeled lipids as substrates. Among the 14 human type IV P-type ATPases, ATP10D was shown to flip NBD-glucosylceramide (GlcCer) across the plasma membrane. Here, we found that conversion of incorporated GlcCer (d18:1/12:0) to other sphingolipids is accelerated in cells exogenously expressing ATP10D but not its ATPase-deficient mutant. These findings suggest that 1) ATP10D flips unmodified GlcCer as well as NBD-GlcCer at the plasma membrane and 2) ATP10D can translocate extracellular GlcCer, which is subsequently converted to other metabolites. Notably, exogenous expression of ATP10D led to the reduction in cellular hexosylceramide levels. Moreover, the expression of GlcCer flippases, including ATP10D, also reduced cellular hexosylceramide levels in fibroblasts derived from patients with Gaucher disease, which is a lysosomal storage disorder with excess GlcCer accumulation. Our study highlights the contribution of ATP10D to the regulation of cellular GlcCer levels and maintaining lipid homeostasis.


Asunto(s)
Glucosilceramidas , ATPasas Tipo P , Humanos , Glucosilceramidas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Adenosina Trifosfatasas/metabolismo , Homeostasis , ATPasas Tipo P/metabolismo
16.
Anal Chim Acta ; 1288: 342145, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220280

RESUMEN

Short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs) are a new class of endogenous lipids belonging to the fatty acid esters of the hydroxy fatty acid family. We previously uncovered their chemical structure and discussed their potential biological significance. We anticipate an increased need for SFAHFA measurements as markers of metabolic and inflammatory health. In this study, we synthesized sixty isomeric SFAHFAs by combining 12 hydroxy fatty acids (C16-C24) and five short-chain fatty acids (C2-C6) including a labelled internal standard. SFAHFA enrichment was achieved by solid-phase extraction and established a sensitive method for their quantitation by targeted LC-MS/MS. The method was applied to profile SFAHFAs in intestinal contents and fecal samples collected from rats fed a high-fat diet (HFD). The results demonstrated a significant decrease in SFAHFAs in the intestinal contents of the HFD group compared with the control group. The fecal time course (0-8 weeks) profile of SFAHFAs showed significant downregulation of acetic and propanoic acid esters in just 2 weeks after HFD administration. This study offers the first synthesis and quantitation method for SFAHFAs, demonstrating their potential use in elucidating SFAHFA sources, their role in various diseases, and potential biochemical signalling pathways.


Asunto(s)
Ésteres , Cromatografía Líquida con Espectrometría de Masas , Ratas , Animales , Cromatografía Liquida/métodos , Contenido Digestivo , Espectrometría de Masas en Tándem/métodos , Ácidos Grasos , Ácidos Grasos Volátiles
17.
Molecules ; 28(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38138514

RESUMEN

Targeting bioactive compounds to prevent lipid droplet accumulation in the liver, we explored an antioxidative extract from vanilla bean (Vainilla planifolia) after chemo-selective derivatization through heating and acid modification. The chemical analysis of vanilla bean extract through chemoselective derivatization resulted in the identification of sixteen compounds (34-50) using LC-MS/MS analysis. A ß-carboline alkaloid with a piperidine C-ring and a vanillin moiety at C-1 (34) was identified by molecular networking and diagnostic fragmentation filtering approaches. ß-carboline alkaloid 34 exhibited significant inhibitory activity of lipid droplet accumulation (LDAI) in oleic acid-loaded hepatocellular carcinoma HepG2 cells. The LDAI activity was associated with both activation of lipolysis and suppression of lipogenesis in the cells. The study indicates that crude plant extracts, following chemoselective derivatization, may contain bioactive compounds that could be beneficial in preventing hepatosteatosis and could serve as a source of lead compounds for drug development. This approach may be useful to investigate other mixtures of natural products and food resources.


Asunto(s)
Alcaloides , Vanilla , Humanos , Vanilla/química , Cromatografía Liquida , Gotas Lipídicas , Espectrometría de Masas en Tándem , Alcaloides/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células Hep G2 , Carbolinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA