Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 33(12): e17377, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38713089

RESUMEN

The acquisition of microbial symbionts enables animals to rapidly adapt to and exploit novel ecological niches, thus significantly enhancing the evolutionary fitness and success of their hosts. However, the dynamics of host-microbe interactions and their evolutionary implications remain largely underexplored in marine invertebrates. Crabs of the family Sesarmidae (Crustacea: Brachyura) are dominant inhabitants of mangrove forests and are considered keystone species there. Their rapid diversification, particularly after adopting a plant-feeding lifestyle, is believed to have been facilitated by symbiotic gut microbes, enabling successful colonization of intertidal and terrestrial environments. To investigate the patterns and mechanisms shaping the microbial communities and the role of microbes in the evolution of Sesarmidae, we characterized and compared the gut microbiome compositions across 43 crab species from Sesarmidae and other mangrove-associated families using 16S metabarcoding. We found that the gut microbiome assemblages in crabs are primarily determined by host identity, with a secondary influence from environmental factors such as microhabitat and sampling location, and to a lesser extent influenced by biological factors such as sex and gut region. While patterns of phylosymbiosis (i.e. when microbial community relationships recapitulate the phylogeny of their hosts) were consistently observed in all beta-diversity metrics analysed, the strength of phylosymbiosis varied across crab families. This suggests that the bacterial assemblages in each family were differentially shaped by different degrees of host filtering and/or other evolutionary processes. Notably, Sesarmidae displayed signals of cophylogeny with its core gut bacterial genera, which likely play crucial functional roles in their hosts by providing lignocellulolytic enzymes, essential amino acids, and fatty acids supplementation. Our results support the hypothesis of microbial contribution to herbivory and terrestrialization in mangrove crabs, highlighting the tight association and codiversification of the crab holobiont.


Asunto(s)
Braquiuros , Microbioma Gastrointestinal , Filogenia , ARN Ribosómico 16S , Simbiosis , Animales , Braquiuros/microbiología , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Humedales
2.
BMC Microbiol ; 24(1): 57, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350856

RESUMEN

BACKGROUND: Sesarmid crabs dominate mangrove habitats as the major primary consumers, which facilitates the trophic link and nutrient recycling in the ecosystem. Therefore, the adaptations and mechanisms of sesarmid crabs to herbivory are not only crucial to terrestrialization and its evolutionary success, but also to the healthy functioning of mangrove ecosystems. Although endogenous cellulase expressions were reported in crabs, it remains unknown if endogenous enzymes alone can complete the whole lignocellulolytic pathway, or if they also depend on the contribution from the intestinal microbiome. We attempt to investigate the role of gut symbiotic microbes of mangrove-feeding sesarmid crabs in plant digestion using a comparative metagenomic approach. RESULTS: Metagenomics analyses on 43 crab gut samples from 23 species of mangrove crabs with different dietary preferences revealed a wide coverage of 127 CAZy families and nine KOs targeting lignocellulose and their derivatives in all species analyzed, including predominantly carnivorous species, suggesting the crab gut microbiomes have lignocellulolytic capacity regardless of dietary preference. Microbial cellulase, hemicellulase and pectinase genes in herbivorous and detritivorous crabs were differentially more abundant when compared to omnivorous and carnivorous crabs, indicating the importance of gut symbionts in lignocellulose degradation and the enrichment of lignocellulolytic microbes in response to diet with higher lignocellulose content. Herbivorous and detritivorous crabs showed highly similar CAZyme composition despite dissimilarities in taxonomic profiles observed in both groups, suggesting a stronger selection force on gut microbiota by functional capacity than by taxonomy. The gut microbiota in herbivorous sesarmid crabs were also enriched with nitrogen reduction and fixation genes, implying possible roles of gut microbiota in supplementing nitrogen that is deficient in plant diet. CONCLUSIONS: Endosymbiotic microbes play an important role in lignocellulose degradation in most crab species. Their abundance is strongly correlated with dietary preference, and they are highly enriched in herbivorous sesarmids, thus enhancing their capacity in digesting mangrove leaves. Dietary preference is a stronger driver in determining the microbial CAZyme composition and taxonomic profile in the crab microbiome, resulting in functional redundancy of endosymbiotic microbes. Our results showed that crabs implement a mixed mode of digestion utilizing both endogenous and microbial enzymes in lignocellulose degradation, as observed in most of the more advanced herbivorous invertebrates.


Asunto(s)
Braquiuros , Celulasa , Microbioma Gastrointestinal , Lignina , Microbiota , Humanos , Animales , Herbivoria , Braquiuros/fisiología , Microbiota/genética , Celulasa/genética , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA