Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38697654

RESUMEN

A coordinated and complex interplay of signals between motor neurons, skeletal muscle cells, and Schwann cells controls the formation and maintenance of neuromuscular synapses. Deficits in the signaling pathway for building synapses, caused by mutations in critical genes or autoantibodies against key proteins, are responsible for several neuromuscular diseases, which cause muscle weakness and fatigue. Here, we describe the role that four key genes, Agrin, Lrp4, MuSK, and Dok7, play in this signaling pathway, how an understanding of their mechanisms of action has led to an understanding of several neuromuscular diseases, and how this knowledge has contributed to emerging therapies for treating neuromuscular diseases.


Asunto(s)
Unión Neuromuscular , Transducción de Señal , Humanos , Animales , Agrina/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Musculares/metabolismo , Enfermedades Neuromusculares , Receptores Colinérgicos/metabolismo , Sinapsis/fisiología , Sinapsis/metabolismo , Neuronas Motoras/fisiología , Neuronas Motoras/metabolismo
2.
Eur J Neurosci ; 59(12): 3292-3308, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38650308

RESUMEN

Muscle-specific kinase myasthenia gravis (MuSK MG) is caused by autoantibodies against MuSK in the neuromuscular junction (NMJ). MuSK MG patients have fluctuating, fatigable skeletal muscle weakness, in particular of bulbar muscles. Severity differs greatly between patients, in spite of comparable autoantibody levels. One explanation for inter-patient and inter-muscle variability in sensitivity might be variations in compensatory muscle responses. Previously, we developed a passive transfer mouse model for MuSK MG. In preliminary ex vivo experiments, we observed that muscle contraction of some mice, in particular those with milder myasthenia, had become partially insensitive to inhibition by µ-Conotoxin-GIIIB, a blocker of skeletal muscle NaV1.4 voltage-gated sodium channels. We hypothesised that changes in NaV channel expression profile, possibly co-expression of (µ-Conotoxin-GIIIB insensitive) NaV1.5 type channels, might lower the muscle fibre's firing threshold and facilitate neuromuscular synaptic transmission. To test this hypothesis, we here performed passive transfer in immuno-compromised mice, using 'high', 'intermediate' and 'low' dosing regimens of purified MuSK MG patient IgG4. We compared myasthenia levels, µ-Conotoxin-GIIIB resistance and muscle fibre action potential characteristics and firing thresholds. High- and intermediate-dosed mice showed clear, progressive myasthenia, not seen in low-dosed animals. However, diaphragm NMJ electrophysiology demonstrated almost equal myasthenic severities amongst all regimens. Nonetheless, low-dosed mouse diaphragms showed a much higher degree of µ-Conotoxin-GIIIB resistance. This was not explained by upregulation of Scn5a (the NaV1.5 gene), lowered muscle fibre firing thresholds or histologically detectable upregulated NaV1.5 channels. It remains to be established which factors are responsible for the observed µ-Conotoxin-GIIIB insensitivity and whether the NaV repertoire change is compensatory beneficial or a bystander effect.


Asunto(s)
Músculo Esquelético , Animales , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Humanos , Miastenia Gravis/metabolismo , Miastenia Gravis/fisiopatología , Miastenia Gravis/inmunología , Modelos Animales de Enfermedad , Femenino , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/inmunología , Canales de Sodio Activados por Voltaje/metabolismo , Unión Neuromuscular/metabolismo , Unión Neuromuscular/efectos de los fármacos , Autoanticuerpos , Masculino , Conotoxinas/farmacología , Inmunización Pasiva
3.
Handb Clin Neurol ; 200: 283-305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38494283

RESUMEN

Myasthenia gravis (MG) is an autoimmune disease characterized by dysfunction of the neuromuscular junction resulting in skeletal muscle weakness. It is equally prevalent in males and females, but debuts at a younger age in females and at an older age in males. Ptosis, diplopia, facial bulbar weakness, and limb weakness are the most common symptoms. MG can be classified based on the presence of serum autoantibodies. Acetylcholine receptor (AChR) antibodies are found in 80%-85% of patients, muscle-specific kinase (MuSK) antibodies in 5%-8%, and <1% may have low-density lipoprotein receptor-related protein 4 (Lrp4) antibodies. Approximately 10% of patients are seronegative for antibodies binding the known disease-related antigens. In patients with AChR MG, 10%-20% have a thymoma, which is usually detected at the onset of the disease. Important differences between clinical presentation, treatment responsiveness, and disease mechanisms have been observed between these different serologic MG classes. Besides the typical clinical features and serologic testing, the diagnosis can be established with additional tests, including repetitive nerve stimulation, single fiber EMG, and the ice pack test. Treatment options for MG consist of symptomatic treatment (such as pyridostigmine), immunosuppressive treatment, or thymectomy. Despite the treatment with symptomatic drugs, steroid-sparing immunosuppressants, intravenous immunoglobulins, plasmapheresis, and thymectomy, a large proportion of patients remain chronically dependent on corticosteroids (CS). In the past decade, the number of treatment options for MG has considerably increased. Advances in the understanding of the pathophysiology have led to new treatment options targeting B or T cells, the complement cascade, the neonatal Fc receptor or cytokines. In the future, these new treatments are likely to reduce the chronic use of CS, diminish side effects, and decrease the number of patients with refractory disease.


Asunto(s)
Miastenia Gravis , Femenino , Humanos , Masculino , Autoanticuerpos , Electromiografía , Inmunosupresores , Miastenia Gravis/diagnóstico , Miastenia Gravis/terapia , Unión Neuromuscular/metabolismo
4.
Clin Immunol ; 257: 109817, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37925120

RESUMEN

A subset of autoimmune diseases is characterized by predominant pathogenic IgG4 autoantibodies (IgG4-AID). Why IgG4 predominates in these disorders is unknown. We hypothesized that dysregulated B cell maturation or aberrant class switching causes overrepresentation of IgG4+ B cells and plasma cells. Therefore, we compared the B cell compartment of patients from four different IgG4-AID with two IgG1-3-AID and healthy donors, using flow cytometry. Relative subset abundance at all maturation stages was normal, except for a, possibly treatment-related, reduction in immature and naïve CD5+ cells. IgG4+ B cell and plasma cell numbers were normal in IgG4-AID patients, however they had a (sub)class-independent 8-fold increase in circulating CD20-CD138+ cells. No autoreactivity was found in this subset. These results argue against aberrant B cell development and rather suggest the autoantibody subclass predominance to be antigen-driven. The similarities between IgG4-AID suggest that, despite displaying variable clinical phenotypes, they share a similar underlying immune profile.


Asunto(s)
Autoanticuerpos , Enfermedades Autoinmunes , Humanos , Cambio de Clase de Inmunoglobulina , Inmunoglobulina G , Linfocitos B
5.
Sci Rep ; 13(1): 7478, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156800

RESUMEN

Muscle-specific kinase (MuSK) is crucial for acetylcholine receptor (AChR) clustering and thereby neuromuscular junction (NMJ) function. NMJ dysfunction is a hallmark of several neuromuscular diseases, including MuSK myasthenia gravis. Aiming to restore NMJ function, we generated several agonist monoclonal antibodies targeting the MuSK Ig-like 1 domain. These activated MuSK and induced AChR clustering in cultured myotubes. The most potent agonists partially rescued myasthenic effects of MuSK myasthenia gravis patient IgG autoantibodies in vitro. In an IgG4 passive transfer MuSK myasthenia model in NOD/SCID mice, MuSK agonists caused accelerated weight loss and no rescue of myasthenic features. The MuSK Ig-like 1 domain agonists unexpectedly caused sudden death in a large proportion of male C57BL/6 mice (but not female or NOD/SCID mice), likely caused by a urologic syndrome. In conclusion, these agonists rescued pathogenic effects in myasthenia models in vitro, but not in vivo. The sudden death in male mice of one of the tested mouse strains revealed an unexpected and unexplained role for MuSK outside skeletal muscle, thereby hampering further (pre-) clinical development of these clones. Future research should investigate whether other Ig-like 1 domain MuSK antibodies, binding different epitopes, do hold a safe therapeutic promise.


Asunto(s)
Miastenia Gravis , Proteínas Tirosina Quinasas Receptoras , Masculino , Animales , Ratones , Ratones SCID , Proteínas Tirosina Quinasas Receptoras/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Miastenia Gravis/metabolismo , Receptores Colinérgicos/metabolismo , Autoanticuerpos , Debilidad Muscular , Acetilcolina
6.
Nat Rev Immunol ; 23(11): 763-778, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37095254

RESUMEN

IgG4 is the least abundant subclass of IgG in human serum and has unique functional features. IgG4 is largely unable to activate antibody-dependent immune effector responses and, furthermore, undergoes Fab (fragment antigen binding)-arm exchange, rendering it bispecific for antigen binding and functionally monovalent. These properties of IgG4 have a blocking effect, either on the immune response or on the target protein of IgG4. In this Review, we discuss the unique structural characteristics of IgG4 and how these contribute to its roles in health and disease. We highlight how, depending on the setting, IgG4 responses can be beneficial (for example, in responses to allergens or parasites) or detrimental (for example, in autoimmune diseases, in antitumour responses and in anti-biologic responses). The development of novel models for studying IgG4 (patho)physiology and understanding how IgG4 responses are regulated could offer insights into novel treatment strategies for these IgG4-associated disease settings.


Asunto(s)
Enfermedades Autoinmunes , Inmunoglobulina G , Humanos
7.
J Allergy Clin Immunol ; 151(6): 1646-1654, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36716825

RESUMEN

BACKGROUND: Increased prevalence of autoantibody Fab glycosylation has been demonstrated for several autoimmune diseases. OBJECTIVES: To study whether elevated Fab glycosylation is a common feature of autoimmunity, this study investigated Fab glycosylation levels on serum IgG and its subclasses for autoantibodies associated with a range of different B cell-mediated autoimmune diseases, including rheumatoid arthritis, myasthenia gravis subtypes, pemphigus vulgaris, antineutrophil cytoplasmic antibody-associated vasculitis, systemic lupus erythematosus, anti-glomerular basement membrane glomerulonephritis, thrombotic thrombocytopenic purpura, and Guillain-Barré syndrome. METHODS: The level of Fab glycosylated IgG antibodies was assessed by lectin affinity chromatography and autoantigen-specific immunoassays. RESULTS: In 6 of 10 autoantibody responses, in 5 of 8 diseases, the investigators found increased levels of Fab glycosylation on IgG autoantibodies that varied from 86% in rheumatoid arthritis to 26% in systemic lupus erythematosus. Elevated autoantibody Fab glycosylation was not restricted to IgG4, which is known to be prone to Fab glycosylation, but was also present in IgG1. When autoimmune diseases with a chronic disease course were compared with more acute autoimmune illnesses, increased Fab glycosylation was restricted to the chronic diseases. As a proxy for chronic autoantigen exposure, the investigators determined Fab glycosylation levels on antibodies to common latent herpes viruses, as well as to glycoprotein 120 in individuals who are chronically HIV-1-infected. Immunity to these viral antigens was not associated with increased Fab glycosylation levels, indicating that chronic antigen-stimulation as such does not lead to increased Fab glycosylation levels. CONCLUSIONS: These data indicate that in chronic but not acute B cell-mediated autoimmune diseases, disease-specific autoantibodies are enriched for Fab glycans.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Miastenia Gravis , Humanos , Autoanticuerpos , Inmunoglobulina G , Autoantígenos
8.
J Allergy Clin Immunol ; 150(5): 999-1010, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36336400

RESUMEN

The presence of autoreactive antibodies is a hallmark of many autoimmune diseases. The effector functions of (auto)antibodies are determined by their constant domain, which defines the antibody isotype and subclass. The most prevalent isotype in serum is IgG, which is often the only isotype used in diagnostic testing. Nevertheless, autoantibody responses can have their own unique isotype/subclass profile. Because comparing autoantibody isotype profiles may yield new insights into disease pathophysiology, here we summarize the isotype/subclass profiles of the most prominent autoantibodies. Despite substantial variation between (and within) autoantibody responses, this unprecedented comparison shows that autoantibodies share distinctive isotype patterns across different diseases. Although most autoantibody responses are dominated by IgG (and mainly IgG1), several specific diseases are characterized by a predominance of IgG4. In other diseases, IgE plays a key role. Importantly, shared features of autoantibody isotype/subclass profiles are seen in clinically unrelated diseases, suggesting potentially common trajectories in response evolution, disease pathogenesis, and treatment response. Isotypes beyond IgG are scarcely investigated in many autoantibody responses, leaving substantial gaps in our understanding of the pathophysiology of autoimmune diseases. Future research should address isotype/subclass profiling in more detail and incorporate autoantibody measurements beyond total IgG in disease models and clinical studies.


Asunto(s)
Autoanticuerpos , Enfermedades Autoinmunes , Humanos , Inmunoglobulina G
9.
J Neuroimmunol ; 373: 577978, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36240543

RESUMEN

Muscle-specific kinase (MuSK) myasthenia gravis (MG) is a neuromuscular autoimmune disease belonging to a growing group of IgG4 autoimmune diseases (IgG4-AIDs), in which the majority of pathogenic autoantibodies are of the IgG4 subclass. The more prevalent form of MG with acetylcholine receptor (AChR) antibodies is caused by IgG1-3 autoantibodies. A dominant role for IgG4 in autoimmune disease is intriguing due to its anti-inflammatory characteristics. It is unclear why MuSK autoantibodies are predominantly IgG4. We hypothesized that MuSK MG patients have a general predisposition to generate IgG4 responses, therefore resulting in high levels of circulating IgG4. To investigate this, we quantified serum Ig isotypes and IgG subclasses using nephelometric and turbidimetric assays in MuSK MG and AChR MG patients not under influence of immunosuppressive treatment. Absolute serum IgG1 was increased in both MuSK and AChR MG patients compared to healthy donors. In addition, only MuSK MG patients on average had significantly increased and enriched serum IgG4. Although more MuSK MG patients had elevated serum IgG4, for most the IgG4 serum levels fell within the normal range. Correlation analyses suggest MuSK-specific antibodies do not solely explain the variation in IgG4 levels. In conclusion, although serum IgG4 levels are slightly increased, the levels do not support ubiquitous IgG4 responses in MuSK MG patients as the underlying cause of dominant IgG4 MuSK antibodies.


Asunto(s)
Inmunoglobulina G , Miastenia Gravis , Humanos , Autoanticuerpos
11.
J Neuroimmunol ; 370: 577930, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35905614

RESUMEN

OBJECTIVE: To determine the effect of tetanus toxoid (TT) revaccination on circulating B-, T- and NK-cell compartments in myasthenia gravis (MG) patients. METHODS: Lymphocyte (sub)populations and differentiation stages were assessed by flow cytometry in 50 TT revaccinated MG patients. TT-specific proliferative responses were explored in PBMC cultures. RESULTS: In patients treated with azathioprine B- and NK cell numbers were strongly decreased. Lymphocyte (sub)populations remained unaffected upon TT revaccination. t All patients showed a significant TT-induced proliferative response. CONCLUSION: TT revaccination is effective in MG patients with stable disease irrespective of their thymectomy status and medication and does not alter the composition of the lymphocyte compartment.


Asunto(s)
Miastenia Gravis , Tétanos , Humanos , Inmunización Secundaria , Terapia de Inmunosupresión , Leucocitos Mononucleares , Miastenia Gravis/tratamiento farmacológico , Miastenia Gravis/cirugía , Timectomía
12.
Front Immunol ; 13: 834342, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401530

RESUMEN

Organ-specific autoimmunity is often characterized by autoantibodies targeting proteins expressed in the affected tissue. A subgroup of autoimmunopathies has recently emerged that is characterized by predominant autoantibodies of the IgG4 subclass (IgG4-autoimmune diseases; IgG4-AID). This group includes pemphigus vulgaris, thrombotic thrombocytopenic purpura, subtypes of autoimmune encephalitis, inflammatory neuropathies, myasthenia gravis and membranous nephropathy. Although the associated autoantibodies target specific antigens in different organs and thus cause diverse syndromes and diseases, they share surprising similarities in genetic predisposition, disease mechanisms, clinical course and response to therapies. IgG4-AID appear to be distinct from another group of rare immune diseases associated with IgG4, which are the IgG4-related diseases (IgG4-RLD), such as IgG4-related which have distinct clinical and serological properties and are not characterized by antigen-specific IgG4. Importantly, IgG4-AID differ significantly from diseases associated with IgG1 autoantibodies targeting the same organ. This may be due to the unique functional characteristics of IgG4 autoantibodies (e.g. anti-inflammatory and functionally monovalent) that affect how the antibodies cause disease, and the differential response to immunotherapies of the IgG4 producing B cells/plasmablasts. These clinical and pathophysiological clues give important insight in the immunopathogenesis of IgG4-AID. Understanding IgG4 immunobiology is a key step towards the development of novel, IgG4 specific treatments. In this review we therefore summarize current knowledge on IgG4 regulation, the relevance of class switching in the context of health and disease, describe the cellular mechanisms involved in IgG4 production and provide an overview of treatment responses in IgG4-AID.


Asunto(s)
Autoanticuerpos , Miastenia Gravis , Linfocitos B , Humanos , Cambio de Clase de Inmunoglobulina , Inmunoglobulina G , Inmunoterapia
13.
J Neurosci Methods ; 373: 109551, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35247492

RESUMEN

BACKGROUND: Myasthenia gravis (MG) is an autoimmune neuromuscular disorder hallmarked by fluctuating fatigable muscle weakness. Most patients have autoantibodies against acetylcholine receptors (AChRs) at the neuromuscular junction (NMJ). These are thought to have three possible pathogenic mode-of-actions: 1) cross-linking and endocytosis of AChRs, 2) direct block of AChRs and 3) complement activation. The relative contributions of these mechanisms to synaptic block and muscle weakness of individual patients cannot be determined. It likely varies between patients and perhaps also with disease course, depending on the nature of the circulating AChR antibodies. NEW METHOD: We developed a new bioassay which specifically enables functional characterization and quantification of complement-mediated synaptic damage at NMJs, without interference of the other pathogenic mechanisms. To this end, we pre-incubated mouse hemi-diaphragm muscle-nerve preparations with mAb35-hG1, a humanized rat AChR monoclonal and subsequently exposed the preparation to normal human serum as a complement source. NMJ-restricted effects were studied. RESULTS: Clearly NMJ-restricted damage occurred. With immunohistology we showed complement deposition at NMJs, and synaptic electrophysiological measurements demonstrated transmission block. In whole-muscle contraction experiments we quantified the effect and characterized its onset and progression during the incubation with normal human serum. COMPARISON WITH EXISTING METHODS: With this new assay the complement-mediated component of myasthenic NMJ pathology can be studied separately. CONCLUSIONS: Our assay will be of importance in detailed mechanistic studies of local complement activation at NMJs, investigations of new complement inhibitors, and laboratory pre-screening of therapeutic efficacy for individual MG patients to optimize care with clinically approved complement inhibitors.


Asunto(s)
Miastenia Gravis , Receptores Colinérgicos , Animales , Autoanticuerpos , Bioensayo , Activación de Complemento , Humanos , Ratones , Miastenia Gravis/terapia , Unión Neuromuscular/patología , Ratas
14.
Lancet Neurol ; 21(2): 163-175, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35065039

RESUMEN

Muscle weakness and fatigue are the hallmarks of autoimmune neuromuscular junction disorders. Although a plethora of immunosuppressive treatments exist, no cure is available to date and many patients are left with debilitating muscle weakness. Recent advances in the understanding of the structure and function of the neuromuscular junction, and the development of novel in vitro and in vivo models, have been instrumental in unravelling the pathophysiology of these autoimmune diseases. These advances are providing the rationale for the development of new therapeutic strategies. Restoration of the immune imbalance in these diseases, in parallel with symptomatic therapeutic approaches at the neuromuscular junction, will be crucial to obtain long-term remission or even cure.


Asunto(s)
Enfermedades de la Unión Neuromuscular , Humanos , Unión Neuromuscular
15.
Eur J Neurosci ; 54(4): 5574-5585, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34228850

RESUMEN

Myasthenia gravis (MG) is an acquired autoimmune disorder caused by autoantibodies binding acetylcholine receptors (AChR), muscle-specific kinase (MuSK), agrin or low-density lipoprotein receptor-related protein 4 (Lrp4). These autoantibodies inhibit neuromuscular transmission by blocking the function of these proteins and thereby cause fluctuating skeletal muscle weakness. Several reports suggest that these autoantibodies might also affect the central nervous system (CNS) in MG patients. A comprehensive overview of the timing and localization of the expression of MG-related antigens in other organs is currently lacking. To investigate the spatio-temporal expression of MG-related genes outside skeletal muscle, we used in silico tools to assess public expression databases. Acetylcholine esterase, nicotinic AChR α1 subunit, agrin, collagen Q, downstream of kinase-7, Lrp4, MuSK and rapsyn were included as MG-related genes because of their well-known involvement in either congenital or autoimmune MG. We investigated expression of MG-related genes in (1) all human tissues using GTEx data, (2) specific brain regions, (3) neurodevelopmental stages, and (4) cell types using datasets from the Allen Institute for Brain Sciences. MG-related genes show heterogenous spatio-temporal expression patterns in the human body as well as in the CNS. For each of these genes, several (new) tissues, brain areas and cortical cell types with (relatively) high expression were identified suggesting a potential role for these genes outside skeletal muscle. The possible presence of MG-related antigens outside skeletal muscle suggests that autoimmune MG, congenital MG or treatments targeting the same proteins may affect MG-related protein function in other organs.


Asunto(s)
Proteínas Relacionadas con Receptor de LDL , Miastenia Gravis , Agrina , Autoanticuerpos , Expresión Génica , Humanos , Miastenia Gravis/genética
16.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753489

RESUMEN

Human immunoglobulin (Ig) G4 usually displays antiinflammatory activity, and observations of IgG4 autoantibodies causing severe autoimmune disorders are therefore poorly understood. In blood, IgG4 naturally engages in a stochastic process termed "Fab-arm exchange" in which unrelated IgG4s exchange half-molecules continuously. The resulting IgG4 antibodies are composed of two different binding sites, thereby acquiring monovalent binding and inability to cross-link for each antigen recognized. Here, we demonstrate that this process amplifies autoantibody pathogenicity in a classic IgG4-mediated autoimmune disease: muscle-specific kinase (MuSK) myasthenia gravis. In mice, monovalent anti-MuSK IgG4s caused rapid and severe myasthenic muscle weakness, whereas the same antibodies in their parental bivalent form were less potent or did not induce a phenotype. Mechanistically this could be explained by opposing effects on MuSK signaling. Isotype switching to IgG4 in an autoimmune response thereby may be a critical step in the development of disease. Our study establishes functional monovalency as a pathogenic mechanism in IgG4-mediated autoimmune disease and potentially other disorders.


Asunto(s)
Autoanticuerpos/inmunología , Inmunoglobulina G/inmunología , Miastenia Gravis/inmunología , Proteínas Tirosina Quinasas Receptoras/inmunología , Receptores Colinérgicos/inmunología , Animales , Anticuerpos Biespecíficos/administración & dosificación , Anticuerpos Biespecíficos/genética , Anticuerpos Biespecíficos/inmunología , Autoanticuerpos/administración & dosificación , Autoanticuerpos/genética , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/genética , Masculino , Ratones , Miastenia Gravis/patología , Mioblastos , Unión Neuromuscular/inmunología , Unión Neuromuscular/patología , Fosforilación/inmunología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
17.
Electrophoresis ; 42(1-2): 171-176, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32901958

RESUMEN

Bispecific monoclonal antibodies (BsAbs) are receiving great attention due to their extensive benefits as biopharmaceuticals and their involvement in IgG4 mediated autoimmune diseases. While the production of BsAbs is getting more accessible, their analytical characterization remains challenging. We explored the potential of sheathless CE-MS for monitoring exchange efficiency and stability of in-house produced bispecific antibodies. Two IgG4 bispecific antibodies with different molecular characteristics were prepared using controlled Fragment antigen binding (Fab)-arm exchange. Separation of BsAbs from their parent monospecific antibodies was achieved using a polyethyleniimine (PEI)-coated capillary and acidic background electrolytes permitting reliable assessment of the exchange efficiency. This was especially valuable for a Fab-glycosylated BsAb where the high glycan heterogeneity resulted in an overlap of masses with the monospecific parent antibody, hindering their discrimination by MS only. The method showed also good capabilities to monitor the stability of the generated BsAbs under different storage conditions. The levels of degradation products were different for the studied antibodies indicating pronounced differences in stability. Overall, the proposed method represents a useful analytical tool for exchange efficiency and stability studies of bispecific antibodies.


Asunto(s)
Anticuerpos Biespecíficos/análisis , Anticuerpos Biespecíficos/química , Electroforesis Capilar/métodos , Espectrometría de Masas/métodos , Anticuerpos Biespecíficos/aislamiento & purificación , Anticuerpos Biespecíficos/metabolismo , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/metabolismo , Inmunoglobulina G/análisis , Inmunoglobulina G/química , Inmunoglobulina G/aislamiento & purificación , Inmunoglobulina G/metabolismo , Polisacáridos/química , Estabilidad Proteica
18.
J Autoimmun ; 112: 102488, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32505442

RESUMEN

Muscle-specific kinase (MuSK) plays a critical role in establishing and maintaining neuromuscular synapses. Antibodies derived from immunizing animals with MuSK were important tools to help detect MuSK and its activity. The role of antibodies in MuSK-related research got an extra dimension when autoantibodies to MuSK were found to cause myasthenia gravis (MG) in 2001. Active immunization with MuSK or passive transfer of polyclonal purified IgG(4) fractions from patients reproduced myasthenic muscle weakness in a range of animal models. Polyclonal patient-purified autoantibodies were furthermore found to block agrin-Lrp4-MuSK signaling, explaining the synaptic disassembly, failure of neuromuscular transmission and ultimately muscle fatigue observed in vivo. MuSK autoantibodies are predominantly of the IgG4 subclass. Low levels of other subclass MuSK antibodies coexist, but their role in the pathogenesis is unclear. Patient-derived monoclonal antibodies revealed that MuSK antibody subclass and valency alters their functional effects and possibly their pathogenicity. Interestingly, recombinant functional bivalent MuSK antibodies might even have therapeutic potential for a variety of neuromuscular disorders, due to their agonistic nature on the MuSK signaling cascade. Thus, MuSK antibodies have proven to be helpful tools to study neuromuscular junction physiology, contributed to our understanding of the pathophysiology of MuSK MG and might be used to treat neuromuscular disorders. The source of MuSK antibodies and consequently their (mixed) polyclonal or monoclonal nature were important confounding factors in these experiments. Here we review the variety of MuSK antibodies described thus far, the insights they have given us and their potential for the future.


Asunto(s)
Autoanticuerpos/inmunología , Autoantígenos/inmunología , Miastenia Gravis/inmunología , Unión Neuromuscular/patología , Proteínas Tirosina Quinasas Receptoras/inmunología , Receptores Colinérgicos/inmunología , Animales , Autoanticuerpos/sangre , Autoanticuerpos/metabolismo , Autoantígenos/metabolismo , Modelos Animales de Enfermedad , Epítopos/inmunología , Humanos , Miastenia Gravis/sangre , Miastenia Gravis/patología , Unión Neuromuscular/inmunología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Colinérgicos/metabolismo
20.
Neurol Neuroimmunol Neuroinflamm ; 6(3): e547, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30882021

RESUMEN

Objective: To isolate and characterize muscle-specific kinase (MuSK) monoclonal antibodies from patients with MuSK myasthenia gravis (MG) on a genetic and functional level. Methods: We generated recombinant MuSK antibodies from patient-derived clonal MuSK-specific B cells and produced monovalent Fab fragments from them. Both the antibodies and Fab fragments were tested for their effects on neural agrin-induced MuSK phosphorylation and acetylcholine receptor (AChR) clustering in myotube cultures. Results: The isolated MuSK monoclonal antibody sequences included IgG1, IgG3, and IgG4 that had undergone high levels of affinity maturation, consistent with antigenic selection. We confirmed their specificity for the MuSK Ig-like 1 domain and binding to neuromuscular junctions. Monovalent MuSK Fab, mimicking functionally monovalent MuSK MG patient Fab-arm exchanged serum IgG4, abolished agrin-induced MuSK phosphorylation and AChR clustering. Surprisingly, bivalent monospecific MuSK antibodies instead activated MuSK phosphorylation and partially induced AChR clustering, independent of agrin. Conclusions: Patient-derived MuSK antibodies can act either as MuSK agonist or MuSK antagonist, depending on the number of MuSK binding sites. Functional monovalency, induced by Fab-arm exchange in patient serum, makes MuSK IgG4 antibodies pathogenic.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Autoanticuerpos/inmunología , Miastenia Gravis/inmunología , Proteínas Tirosina Quinasas Receptoras/inmunología , Receptores Colinérgicos/inmunología , Adulto , Anticuerpos Monoclonales/aislamiento & purificación , Autoanticuerpos/aislamiento & purificación , Células Cultivadas , Humanos , Fibras Musculares Esqueléticas , Proteínas Tirosina Quinasas Receptoras/agonistas , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Recombinantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA