RESUMEN
Spices are a popular food of plant origin, rich in various phytochemicals and recognized for their numerous properties. The aim of the study was to evaluate the antioxidant and antimicrobial activity, as well as the content of specialized metabolites, of aqueous extracts of three spice species--garlic (Allium sativum L.), ginger (Zingiber officinalle L.) and turmeric (Curcuma longa L.)--prepared by green extraction methods. Ultrasound treatment increased the chromaticity parameter b value of turmeric and ginger extracts, thus indicating a higher yellow color predominantly due to curcuminoids characteristic of these species. Ultrasound-assisted extraction significantly increased the content of total soluble solids, phenolic compounds, total carotenoids and vitamin C. The temperature of the system was also an important factor, with the highest (70 °C) conditions in ultrasound-assisted extraction having a positive effect on thermolabile compounds (vitamin C, phenolics, total carotenoids). For example, turmeric extract treated with ultrasound at 70 °C had up to a 67% higher vitamin C content and a 69.4% higher total carotenoid content compared to samples treated conventionally at the same temperature, while ginger extracts had up to 40% higher total phenols. All different concentrations of spice extracts were not sufficient for complete inhibition of pathogenic bacterial strains of Salmonella, L. monocytogenes and S. aureus; however, only garlic extracts had an effect on slowing down the growth and number of L. monocytogenes colonies. Spice extracts obtained by ultrasonic treatment contained a significantly higher level of bioactive compounds and antioxidant capacity, suggesting that the extracts obtained have significant nutritional potential and thus a significant possibility for phytotherapeutic uses.
Asunto(s)
Antibacterianos , Bacterias/crecimiento & desarrollo , Curcuma , Ajo/química , Extractos Vegetales , Especias , Zingiber officinale/química , Antibacterianos/química , Antibacterianos/farmacología , Curcuma/química , Extractos Vegetales/química , Extractos Vegetales/farmacologíaRESUMEN
This study addresses the application of native, multiple strain starter cultures for standardization of game meat sausages production. The designed starter cultures consisting of two indigenous Lactobacillus sakei and one Leuconostoc mesenteroides strains. These strains were used in both, the encapsulated and non-encapsulated form, in the game meat dough, individually or in combination, with eight treatments in total. Microbiological and physicochemical characteristics of the sausages were monitored throughout the manufacturing process, while sensory properties, biogenic amine content, and volatile compounds were evaluated in the final products. As revealed by rep-PCR, native starter cultures, encapsulated or non-encapsulated, had survived the whole sausage production process; however, to varying degrees. The application of indigenous decarboxylase negative Lb. sakei strains significantly (P < 0.05) reduced tyramine content, rapidly decreased pH and promoted the number reduction of Enterobacteriaceae and elimination of E. coli, L. monocytogenes and coliforms in ready-to-eat products. A total of 84 volatile compounds were identified by SPME-GC-MS in the eight treatment batches of game meat sausages, with only minor differences between the treatments. No significant differences in sensory traits (P > 0.05) between tested treatments were found, although treatment with the Lb. sakei strains received the highest scores for the sensory traits including cross-section, odour, hardness, aroma, and overall acceptability. Combination of multi-strain Lb. sakei starter cultures resulted in growth prevention of undesirable microbiota, reduction of tyramine content and increased the acceptability parameters of full-ripened sausages, which make them good candidates for industrial as well as artisanal application.
RESUMEN
In this study, prevalence, biotechnological and safety profiles of 588 Enterococcus isolates isolated from raw milk and Istrian cheese during different stages of ripening were analyzed. Despite the low and variable presence of enterococci in milk ((3.65±2.93) log CFU/mL), highly comparable enterococcal populations were established after 30 days of cheese ripening ((7.96±0.80) log CFU/g), confirming Enterococcus spp. as a major part of the core microbiota of Istrian cheese. The dominant species were E. faecium (53.8%) and E. faecalis (42.4%), while minor groups, consisting of E. durans (2.84%) and E. casseliflavus (0.95%), also occurred. A pronounced intraspecies variability was noticed based on molecular fingerprinting, with 35 strains (genotypes) detected. Most of the genotypes were farm-specific with one third being shared between the farms. This genotype variability reflected particular differences of Istrian cheese production, mainly variable salt concentration, ripening temperature and air humidity as well as microclimatic or vegetation conditions. There was considerable variation between the strains of the same species regarding wide range of biotechnologically important traits as well as their ability to survive in simulated gastrointestinal conditions. A considerable number of strains were resistant to critically important antibiotics such as tetracycline (43.56%), erythromycin (35.79%) and vancomycin (23.48%). Polymerase chain reaction-based detection did not identify any of the common genetic determinants for vancomycin and erythromycin resistance; for tetracycline tetM gene was detected. The presence of virulence genes including agg, efaAfs, gelE, cylM, cylB, cylA, esp, efaAfm, cob and cpd was frequently recorded, especially among E. faecalis strains.
RESUMEN
Viruses have been for long polemic biological particles which stand in the twilight of being living entities or not. As their genome is reduced, they rely on the metabolic machinery of their host in order to replicate and be able to continue with their infection process. The understanding of their metabolic requirements is thus of paramount importance in order to develop tailored drugs to control their population, without affecting the normal functioning of their host. New advancements in high throughput technologies, especially metabolomics are allowing researchers to uncover the metabolic mechanisms of viral replication. In this short review, we present the latest discoveries that have been made in the field and an overview of the intrinsic relationship between metabolism and innate immunity as an important part of the immune system.
RESUMEN
Fever or pyrexia is a process where normal body temperature is raised over homeostasis conditions. Although many effects of fever over the immune system have been known for a long time, it has not been until recent studies when these effects have been evaluated in several infection processes. Results have been promising, as they have reported new ways of regulation, especially in RNA molecules. In light of these new studies, it seems important to start to evaluate the effects of pyrexia in current research efforts in host-pathogen interactions. Viruses and bacteria are responsible for different types of infectious diseases, and while it is of paramount importance to understand the mechanisms of infection, potential effects of fever on this process may have been overlooked. This is especially relevant because during the course of many infectious diseases the organism develops fever. Due to the lack of specific treatments for many of those afflictions, experimental evaluation in fever-like conditions can potentially bring new insights into the infection process and can ultimately help to develop treatments. The aim of this review is to present evidence that the temperature increase during fever affects the way the infection takes place, for both the pathogen and the host.
RESUMEN
Oesophageal Squamous Cell Carcinoma (ESCC) is one of the two main subtypes of oesophageal cancer, affecting mainly populations in Asia. Though there have been great efforts to develop methods for a better prognosis, there is still a limitation in the staging of this affection. As a result, ESCC is detected at advances stages, when the interventions on the patient do not have such a positive outcome, leading in many cases to recurrence and to a very low 5-year survival rate, causing high mortality. A way to decrease the number of deaths is the use of biomarkers that can trace the advance of the disease at early stages, when surgical or chemotherapeutic methodologies would have a greater effect on the evolution of the subject. The new high throughput omics technologies offer an unprecedented chance to screen for thousands of molecules at the same time, from which a new set of biomarkers could be developed. One of the most convenient types of samples is saliva, an accessible body fluid that has the advantage of being non-invasive for the patient, being easy to store or to process. This review will focus on the current status of the new omics technologies regarding salivaomics in ESCC, or when not evaluated yet, the achievements in related diseases.