Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673896

RESUMEN

Abnormal cardiac metabolism precedes and contributes to structural changes in heart failure. Low-level tragus stimulation (LLTS) can attenuate structural remodeling in heart failure with preserved ejection fraction (HFpEF). The role of LLTS on cardiac metabolism is not known. Dahl salt-sensitive rats of 7 weeks of age were randomized into three groups: low salt (0.3% NaCl) diet (control group; n = 6), high salt diet (8% NaCl) with either LLTS (active group; n = 8), or sham stimulation (sham group; n = 5). Both active and sham groups received the high salt diet for 10 weeks with active LLTS or sham stimulation (20 Hz, 2 mA, 0.2 ms) for 30 min daily for the last 4 weeks. At the endpoint, left ventricular tissue was used for RNA sequencing and transcriptomic analysis. The Ingenuity Pathway Analysis tool (IPA) was used to identify canonical metabolic pathways and upstream regulators. Principal component analysis demonstrated overlapping expression of important metabolic genes between the LLTS, and control groups compared to the sham group. Canonical metabolic pathway analysis showed downregulation of the oxidative phosphorylation (Z-score: -4.707, control vs. sham) in HFpEF and LLTS improved the oxidative phosphorylation (Z-score = -2.309, active vs. sham). HFpEF was associated with the abnormalities of metabolic upstream regulators, including PPARGC1α, insulin receptor signaling, PPARα, PPARδ, PPARGC1ß, the fatty acid transporter SLC27A2, and lysine-specific demethylase 5A (KDM5A). LLTS attenuated abnormal insulin receptor and KDM5A signaling. HFpEF is associated with abnormal cardiac metabolism. LLTS, by modulating the functioning of crucial upstream regulators, improves cardiac metabolism and mitochondrial oxidative phosphorylation.


Asunto(s)
Insuficiencia Cardíaca , Miocardio , Volumen Sistólico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Animales , Ratas , Masculino , Miocardio/metabolismo , Transcriptoma , Ratas Endogámicas Dahl , Perfilación de la Expresión Génica , Fosforilación Oxidativa , Modelos Animales de Enfermedad
2.
J Am Heart Assoc ; 13(7): e033676, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38533937

RESUMEN

BACKGROUND: Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) is a critical glycolytic regulator responsible for upregulation of glycolysis in response to insulin and adrenergic signaling. PFKFB2, the cardiac isoform of PFK-2, is degraded in the heart in the absence of insulin signaling, contributing to diabetes-induced cardiac metabolic inflexibility. However, previous studies have not examined how the loss of PFKFB2 affects global cardiac metabolism and function. METHODS AND RESULTS: To address this, we have generated a mouse model with a cardiomyocyte-specific knockout of PFKFB2 (cKO). Using 9-month-old cKO and control mice, we characterized the impacts of PFKFB2 on cardiac metabolism, function, and electrophysiology. cKO mice have a shortened life span of 9 months. Metabolically, cKO mice are characterized by increased glycolytic enzyme abundance and pyruvate dehydrogenase activity, as well as decreased mitochondrial abundance and beta oxidation, suggesting a shift toward glucose metabolism. This was supported by a decrease in the ratio of palmitoyl carnitine to pyruvate-dependent mitochondrial respiration in cKO relative to control animals. Metabolomic, proteomic, and Western blot data support the activation of ancillary glucose metabolism, including pentose phosphate and hexosamine biosynthesis pathways. Physiologically, cKO animals exhibited impaired systolic function and left ventricular dilation, represented by reduced fractional shortening and increased left ventricular internal diameter, respectively. This was accompanied by electrophysiological alterations including increased QT interval and other metrics of delayed ventricular conduction. CONCLUSIONS: Loss of PFKFB2 results in metabolic remodeling marked by cardiac ancillary pathway activation. This could delineate an underpinning of pathologic changes to mechanical and electrical function in the heart.


Asunto(s)
Miocitos Cardíacos , Fosfofructoquinasa-2 , Animales , Ratones , Glucosa/metabolismo , Insulina/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Proteómica , Piruvatos/metabolismo
3.
bioRxiv ; 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38045353

RESUMEN

Background: Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) is a critical glycolytic regulator responsible for upregulation of glycolysis in response to insulin and adrenergic signaling. PFKFB2, the cardiac isoform of PFK-2, is degraded in the heart in the absence of insulin signaling, contributing to diabetes-induced cardiac metabolic inflexibility. However, previous studies have not examined how the loss of PFKFB2 affects global cardiac metabolism and function. Methods: To address this, we have generated a mouse model with a cardiomyocyte-specific knockout of PFKFB2 (cKO). Using 9-month-old cKO and control (CON) mice, we characterized impacts of PFKFB2 on cardiac metabolism, function, and electrophysiology. Results: cKO mice have a shortened lifespan of 9 months. Metabolically, cKO mice are characterized by increased glycolytic enzyme abundance and pyruvate dehydrogenase (PDH) activity, as well as decreased mitochondrial abundance and beta oxidation, suggesting a shift toward glucose metabolism. This was supported by a decrease in the ratio of palmitoyl carnitine to pyruvate-dependent mitochondrial respiration in cKO relative to CON animals. Metabolomic, proteomic, and western blot data support the activation of ancillary glucose metabolism, including pentose phosphate and hexosamine biosynthesis pathways. Physiologically, cKO animals exhibited impaired systolic function and left ventricular (LV) dilation, represented by reduced fractional shortening and increased LV internal diameter, respectively. This was accompanied by electrophysiological alterations including increased QT interval and other metrics of delayed ventricular conduction. Conclusions: Loss of PFKFB2 results in metabolic remodeling marked by cardiac ancillary pathway activation. This could delineate an underpinning of pathologic changes to mechanical and electrical function in the heart. Clinical Perspective: What is New?: We have generated a novel cardiomyocyte-specific knockout model of PFKFB2, the cardiac isoform of the primary glycolytic regulator Phosphofructokinase-2 (cKO).The cKO model demonstrates that loss of cardiac PFKFB2 drives metabolic reprogramming and shunting of glucose metabolites to ancillary metabolic pathways.The loss of cardiac PFKFB2 promotes electrophysiological and functional remodeling in the cKO heart.What are the Clinical Implications?: PFKFB2 is degraded in the absence of insulin signaling, making its loss particularly relevant to diabetes and the pathophysiology of diabetic cardiomyopathy.Changes which we observe in the cKO model are consistent with those often observed in diabetes and heart failure of other etiologies.Defining PFKFB2 loss as a driver of cardiac pathogenesis identifies it as a target for future investigation and potential therapeutic intervention.

4.
iScience ; 26(7): 107131, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37534142

RESUMEN

A healthy heart adapts to changes in nutrient availability and energy demands. In metabolic diseases like type 2 diabetes (T2D), increased reliance on fatty acids for energy production contributes to mitochondrial dysfunction and cardiomyopathy. A principal regulator of cardiac metabolism is 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2), which is a central driver of glycolysis. We hypothesized that increasing PFK-2 activity could mitigate cardiac dysfunction induced by high-fat diet (HFD). Wild type (WT) and cardiac-specific transgenic mice expressing PFK-2 (GlycoHi) were fed a low fat or HFD for 16 weeks to induce metabolic dysfunction. Metabolic phenotypes were determined by measuring mitochondrial bioenergetics and performing targeted quantitative proteomic and metabolomic analysis. Increasing cardiac PFK-2 had beneficial effects on cardiac and mitochondrial function. Unexpectedly, GlycoHi mice also exhibited sex-dependent systemic protection from HFD, including increased glucose homeostasis. These findings support improving glycolysis via PFK-2 activity can mitigate mitochondrial and functional changes that occur with metabolic syndrome.

5.
Geroscience ; 45(2): 983-999, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36460774

RESUMEN

SIRT3 is a longevity factor that acts as the primary deacetylase in mitochondria. Although ubiquitously expressed, previous global SIRT3 knockout studies have shown primarily a cardiac-specific phenotype. Here, we sought to determine how specifically knocking out SIRT3 in cardiomyocytes (SIRTcKO mice) temporally affects cardiac function and metabolism. Mice displayed an age-dependent increase in cardiac pathology, with 10-month-old mice exhibiting significant loss of systolic function, hypertrophy, and fibrosis. While mitochondrial function was maintained at 10 months, proteomics and metabolic phenotyping indicated SIRT3 hearts had increased reliance on glucose as an energy substrate. Additionally, there was a significant increase in branched-chain amino acids in SIRT3cKO hearts without concurrent increases in mTOR activity. Heavy water labeling experiments demonstrated that, by 3 months of age, there was an increase in protein synthesis that promoted hypertrophic growth with a potential loss of proteostasis in SIRT3cKO hearts. Cumulatively, these data show that the cardiomyocyte-specific loss of SIRT3 results in severe pathology with an accelerated aging phenotype.


Asunto(s)
Sirtuina 3 , Ratones , Animales , Sirtuina 3/genética , Sirtuina 3/metabolismo , Proteostasis , Ratones Noqueados , Miocitos Cardíacos , Mitocondrias/metabolismo
6.
Redox Biol ; 47: 102140, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34560411

RESUMEN

Diabetic cardiomyopathy is associated with an increase in oxidative stress. However, antioxidant therapy has shown a limited capacity to mitigate disease pathology. The molecular mechanisms responsible for the modulation of reactive oxygen species (ROS) production and clearance must be better defined. The objective of this study was to determine how insulin affects superoxide radical (O2•-) levels. O2•- production was evaluated in adult cardiomyocytes isolated from control and Akita (type 1 diabetic) mice by spin-trapping electron paramagnetic resonance spectroscopy. We found that the basal rates of O2•- production were comparable in control and Akita cardiomyocytes. However, culturing cardiomyocytes without insulin resulted in a significant increase in O2•- production only in the Akita group. In contrast, O2•- production was unaffected by high glucose and/or fatty acid supplementation. The increase in O2•- was due in part to a decrease in superoxide dismutase (SOD) activity. The PI3K inhibitor, LY294002, decreased Akita SOD activity when insulin was present, indicating that the modulation of antioxidant activity is through insulin signaling. The effect of insulin on mitochondrial O2•- production was evaluated in Akita mice that underwent a 1-week treatment of insulin. Mitochondria isolated from insulin-treated Akita mice produced less O2•- than vehicle-treated diabetic mice. Quantitative proteomics was performed on whole heart homogenates to determine how insulin affects antioxidant protein expression. Of 29 antioxidant enzymes quantified, thioredoxin 1 was the only one that was significantly enhanced by insulin treatment. In vitro analysis of thioredoxin 1 revealed a previously undescribed capacity of the enzyme to directly scavenge O2•-. These findings demonstrate that insulin has a role in mitigating cardiac oxidative stress in diabetes via regulation of endogenous antioxidant activity.


Asunto(s)
Antioxidantes , Diabetes Mellitus Experimental , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Insulina , Ratones , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas
7.
FASEB J ; 35(7): e21728, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34110658

RESUMEN

Proliferation and differentiation of preadipocytes, and other cell types, is accompanied by an increase in glucose uptake. Previous work showed that a pulse of high glucose was required during the first 3 days of differentiation in vitro, but was not required after that. The specific glucose metabolism pathways required for adipocyte differentiation are unknown. Herein, we used 3T3-L1 adipocytes as a model system to study glucose metabolism and expansion of the adipocyte metabolome during the first 3 days of differentiation. Our primary outcome measures were GLUT4 and adiponectin, key proteins associated with healthy adipocytes. Using complete media with 0 or 5 mM glucose, we distinguished between developmental features that were dependent on the differentiation cocktail of dexamethasone, insulin, and isobutylmethylxanthine alone or the cocktail plus glucose. Cocktail alone was sufficient to activate the capacity for 2-deoxglucose uptake and glycolysis, but was unable to support the expression of GLUT4 and adiponectin in mature adipocytes. In contrast, 5 mM glucose in the media promoted a transient increase in glucose uptake and glycolysis as well as a significant expansion of the adipocyte metabolome and proteome. Using genetic and pharmacologic approaches, we found that the positive effects of 5 mM glucose on adipocyte differentiation were specifically due to increased expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key regulator of glycolysis and the ancillary glucose metabolic pathways. Our data reveal a critical role for PFKFB3 activity in regulating the cellular metabolic remodeling required for adipocyte differentiation and maturation.


Asunto(s)
Adipocitos/metabolismo , Glucosa/metabolismo , Fosfofructoquinasa-2/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adiponectina/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular , Dexametasona/farmacología , Transportador de Glucosa de Tipo 4/metabolismo , Glucólisis/efectos de los fármacos , Glucólisis/fisiología , Insulina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Xantinas/farmacología
8.
Cartilage ; 13(2_suppl): 1185S-1199S, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33567897

RESUMEN

OBJECTIVE: Obesity accelerates the development of osteoarthritis (OA) during aging and is associated with altered chondrocyte cellular metabolism. Protein lysine malonylation (MaK) is a posttranslational modification (PTM) that has been shown to play an important role during aging and obesity. The objective of this study was to investigate the role of sirtuin 5 (Sirt5) in regulating MaK and cellular metabolism in chondrocytes under obesity-related conditions. METHODS: MaK and SIRT5 were immunostained in knee articular cartilage of obese db/db mice and different aged C57BL6 mice with or without destabilization of the medial meniscus surgery to induce OA. Primary chondrocytes were isolated from 7-day-old WT and Sirt5-/- mice and treated with varying concentrations of glucose and insulin to mimic obesity. Sirt5-dependent effects on MaK and metabolism were evaluated by western blot, Seahorse Respirometry, and gas/chromatography-mass/spectrometry (GC-MS) metabolic profiling. RESULTS: MaK was significantly increased in cartilage of db/db mice and in chondrocytes treated with high concentrations of glucose and insulin (GluhiInshi). Sirt5 was increased in an age-dependent manner following joint injury, and Sirt5 deficient primary chondrocytes had increased MaK, decreased glycolysis rate, and reduced basal mitochondrial respiration. GC-MS identified 41 metabolites. Sirt5 deficiency altered 13 distinct metabolites under basal conditions and 18 metabolites under GluhiInshi treatment. Pathway analysis identified a wide range of Sirt5-dependent altered metabolic pathways that include amino acid metabolism, TCA cycle, and glycolysis. CONCLUSION: This study provides the first evidence that Sirt5 broadly regulates chondrocyte metabolism. We observed changes in SIRT5 and MaK levels in cartilage with obesity and joint injury, suggesting that the Sirt5-MaK pathway may contribute to altered chondrocyte metabolism that occurs during OA development.


Asunto(s)
Cartílago Articular , Condrocitos , Obesidad , Sirtuinas , Animales , Cartílago Articular/metabolismo , Cartílago Articular/patología , Condrocitos/metabolismo , Condrocitos/patología , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/patología , Osteoartritis/metabolismo , Sirtuinas/deficiencia , Sirtuinas/metabolismo
9.
PLoS One ; 15(8): e0231806, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32817622

RESUMEN

The cAMP-dependent protein kinase (PKA) signaling pathway is the primary means by which the heart regulates moment-to-moment changes in contractility and metabolism. We have previously found that PKA signaling is dysfunctional in the diabetic heart, yet the underlying mechanisms are not fully understood. The objective of this study was to determine if decreased insulin signaling contributes to a dysfunctional PKA response. To do so, we isolated adult cardiomyocytes (ACMs) from wild type and Akita type 1 diabetic mice. ACMs were cultured in the presence or absence of insulin and PKA signaling was visualized by immunofluorescence microscopy using an antibody that recognizes proteins specifically phosphorylated by PKA. We found significant decreases in proteins phosphorylated by PKA in wild type ACMs cultured in the absence of insulin. PKA substrate phosphorylation was decreased in Akita ACMs, as compared to wild type, and unresponsive to the effects of insulin. The decrease in PKA signaling was observed regardless of whether the kinase was stimulated with a beta-agonist, a cell-permeable cAMP analog, or with phosphodiesterase inhibitors. PKA content was unaffected, suggesting that the decrease in PKA signaling may be occurring by the loss of specific PKA substrates. Phospho-specific antibodies were used to discern which potential substrates may be sensitive to the loss of insulin. Contractile proteins were phosphorylated similarly in wild type and Akita ACMs regardless of insulin. However, phosphorylation of the glycolytic regulator, PFK-2, was significantly decreased in an insulin-dependent manner in wild type ACMs and in an insulin-independent manner in Akita ACMs. These results demonstrate a defect in PKA activation in the diabetic heart, mediated in part by deficient insulin signaling, that results in an abnormal activation of a primary metabolic regulator.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Diabetes Mellitus/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Insulina/metabolismo , Insulina/farmacología , Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/fisiología , Inhibidores de Fosfodiesterasa/farmacología , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , Transducción de Señal/efectos de los fármacos
10.
J Biol Chem ; 294(45): 16831-16845, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31562244

RESUMEN

The healthy heart has a dynamic capacity to respond and adapt to changes in nutrient availability. Metabolic inflexibility, such as occurs with diabetes, increases cardiac reliance on fatty acids to meet energetic demands, and this results in deleterious effects, including mitochondrial dysfunction, that contribute to pathophysiology. Enhancing glucose usage may mitigate metabolic inflexibility and be advantageous under such conditions. Here, we sought to identify how mitochondrial function and cardiac metabolism are affected in a transgenic mouse model of enhanced cardiac glycolysis (GlycoHi) basally and following a short-term (7-day) high-fat diet (HFD). GlycoHi mice constitutively express an active form of phosphofructokinase-2, resulting in elevated levels of the PFK-1 allosteric activator fructose 2,6-bisphosphate. We report that basally GlycoHi mitochondria exhibit augmented pyruvate-supported respiration relative to fatty acids. Nevertheless, both WT and GlycoHi mitochondria had a similar shift toward increased rates of fatty acid-supported respiration following HFD. Metabolic profiling by GC-MS revealed distinct features based on both genotype and diet, with a unique increase in branched-chain amino acids in the GlycoHi HFD group. Targeted quantitative proteomics analysis also supported both genotype- and diet-dependent changes in protein expression and uncovered an enhanced expression of pyruvate dehydrogenase kinase 4 (PDK4) in the GlycoHi HFD group. These results support a newly identified mechanism whereby the levels of fructose 2,6-bisphosphate promote mitochondrial PDK4 levels and identify a secondary adaptive response that prevents excessive mitochondrial pyruvate oxidation when glycolysis is sustained after a high-fat dietary challenge.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Glucólisis/efectos de los fármacos , Corazón/efectos de los fármacos , Miocardio/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Glucosa/metabolismo , Ratones , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Miocardio/citología , Proteómica , Estrés Fisiológico , Factores de Tiempo
11.
Metabolomics ; 15(2): 18, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30830475

RESUMEN

INTRODUCTION: As an insulin sensitive tissue, the heart decreases glucose usage during fasting. This response is mediated, in part, by decreasing phosphofructokinase-2 (PFK-2) activity and levels of its product fructose-2,6-bisphosphate. However, the importance of fructose-2,6-bisphosphate in the fasting response on other metabolic pathways has not been evaluated. OBJECTIVES: The goal of this study is to determine how sustaining cardiac fructose-2,6-bisphosphate levels during fasting affects the metabolomic profile. METHODS: Control and transgenic mice expressing a constitutively active form of PFK-2 (GlycoHi) were subjected to either 12-h fasting or regular feeding. Animals (n = 4 per group) were used for whole-heart extraction, followed by gas chromatography-mass spectrometry metabolic profiling and multivariate data analysis. RESULTS: Principal component analysis displayed differences between Control and GlycoHi groups under both fasting and fed conditions while a clear response to fasting was observed only for Control animals. However, pathway analysis revealed that these smaller changes in the GlycoHi group were significantly associated with branched-chain amino acid (BCAA) metabolism (~ 40% increase in all BCAAs). Correlation network analysis demonstrated clear differences in response to fasting between Control and GlycoHi groups amongst most parameters. Notably, fasting caused an increase in network density in the Control group from 0.12 to 0.14 while the GlycoHi group responded oppositely (0.17-0.15). CONCLUSIONS: Elevated cardiac PFK-2 activity during fasting selectively increases BCAAs levels and decreases global changes in metabolism.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Fructosadifosfatos/metabolismo , Miocardio/metabolismo , Animales , Glucemia/metabolismo , Ayuno/metabolismo , Fructosa , Cromatografía de Gases y Espectrometría de Masas/métodos , Glucosa/metabolismo , Corazón/fisiología , Insulina , Masculino , Metabolómica/métodos , Ratones , Ratones Transgénicos , Fosfofructoquinasa-2/metabolismo , Análisis de Componente Principal
12.
PLoS One ; 14(2): e0208399, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30716067

RESUMEN

Diabetic retinopathy (DR) is a common neurovascular complication of type 1 diabetes. Current therapeutics target neovascularization characteristic of end-stage disease, but are associated with significant adverse effects. Targeting early events of DR such as neurodegeneration may lead to safer and more effective approaches to treatment. Two independent prospective clinical trials unexpectedly identified that the PPARα agonist fenofibrate had unprecedented therapeutic effects in DR, but gave little insight into the physiological and molecular mechanisms of action. The objective of the present study was to evaluate potential neuroprotective effects of PPARα in DR, and subsequently to identify the responsible mechanism of action. Here we reveal that activation of PPARα had a robust protective effect on retinal function as shown by Optokinetic tracking in a rat model of type 1 diabetes, and also decreased retinal cell death, as demonstrated by a DNA fragmentation ELISA. Further, PPARα ablation exacerbated diabetes-induced decline of visual function as demonstrated by ERG analysis. We further found that PPARα improved mitochondrial efficiency in DR, and decreased ROS production and cell death in cultured retinal neurons. Oxidative stress biomarkers were elevated in diabetic Pparα-/- mice, suggesting increased oxidative stress. Mitochondrially mediated apoptosis and oxidative stress secondary to mitochondrial dysfunction contribute to neurodegeneration in DR. Taken together, these findings identify a robust neuroprotective effect for PPARα in DR, which may be due to improved mitochondrial function and subsequent alleviation of energetic deficits, oxidative stress and mitochondrially mediated apoptosis.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Retinopatía Diabética/metabolismo , Fármacos Neuroprotectores/metabolismo , PPAR alfa/metabolismo , Animales , Apoptosis/efectos de los fármacos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Retinopatía Diabética/tratamiento farmacológico , Modelos Animales de Enfermedad , Fenofibrato/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo/efectos de los fármacos , Estudios Prospectivos , Ratas , Ratas Endogámicas BN , Ratas Sprague-Dawley , Retina/efectos de los fármacos , Retina/metabolismo , Enfermedades de la Retina/tratamiento farmacológico , Enfermedades de la Retina/metabolismo
13.
J Cachexia Sarcopenia Muscle ; 10(2): 411-428, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30706998

RESUMEN

BACKGROUND: Excess reactive oxygen species (ROS) and muscle weakness occur in parallel in multiple pathological conditions. However, the causative role of skeletal muscle mitochondrial ROS (mtROS) on neuromuscular junction (NMJ) morphology and function and muscle weakness has not been directly investigated. METHODS: We generated mice lacking skeletal muscle-specific manganese-superoxide dismutase (mSod2KO) to increase mtROS using a cre-Lox approach driven by human skeletal actin. We determined primary functional parameters of skeletal muscle mitochondrial function (respiration, ROS, and calcium retention capacity) using permeabilized muscle fibres and isolated muscle mitochondria. We assessed contractile properties of isolated skeletal muscle using in situ and in vitro preparations and whole lumbrical muscles to elucidate the mechanisms of contractile dysfunction. RESULTS: The mSod2KO mice, contrary to our prediction, exhibit a 10-15% increase in muscle mass associated with an ~50% increase in central nuclei and ~35% increase in branched fibres (P < 0.05). Despite the increase in muscle mass of gastrocnemius and quadriceps, in situ sciatic nerve-stimulated isometric maximum-specific force (N/cm2 ), force per cross-sectional area, is impaired by ~60% and associated with increased NMJ fragmentation and size by ~40% (P < 0.05). Intrinsic alterations of components of the contractile machinery show elevated markers of oxidative stress, for example, lipid peroxidation is increased by ~100%, oxidized glutathione is elevated by ~50%, and oxidative modifications of myofibrillar proteins are increased by ~30% (P < 0.05). We also find an approximate 20% decrease in the intracellular calcium transient that is associated with specific force deficit. Excess superoxide generation from the mitochondrial complexes causes a deficiency of succinate dehydrogenase and reduced complex-II-mediated respiration and adenosine triphosphate generation rates leading to severe exercise intolerance (~10 min vs. ~2 h in wild type, P < 0.05). CONCLUSIONS: Increased skeletal muscle mtROS is sufficient to elicit NMJ disruption and contractile abnormalities, but not muscle atrophy, suggesting new roles for mitochondrial oxidative stress in maintenance of muscle mass through increased fibre branching.

14.
Mol Metab ; 9: 141-155, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29398615

RESUMEN

OBJECTIVE: A decline in mitochondrial function and biogenesis as well as increased reactive oxygen species (ROS) are important determinants of aging. With advancing age, there is a concomitant reduction in circulating levels of insulin-like growth factor-1 (IGF-1) that is closely associated with neuronal aging and neurodegeneration. In this study, we investigated the effect of the decline in IGF-1 signaling with age on astrocyte mitochondrial metabolism and astrocyte function and its association with learning and memory. METHODS: Learning and memory was assessed using the radial arm water maze in young and old mice as well as tamoxifen-inducible astrocyte-specific knockout of IGFR (GFAP-CreTAM/igfrf/f). The impact of IGF-1 signaling on mitochondrial function was evaluated using primary astrocyte cultures from igfrf/f mice using AAV-Cre mediated knockdown using Oroboros respirometry and Seahorse assays. RESULTS: Our results indicate that a reduction in IGF-1 receptor (IGFR) expression with age is associated with decline in hippocampal-dependent learning and increased gliosis. Astrocyte-specific knockout of IGFR also induced impairments in working memory. Using primary astrocyte cultures, we show that reducing IGF-1 signaling via a 30-50% reduction IGFR expression, comparable to the physiological changes in IGF-1 that occur with age, significantly impaired ATP synthesis. IGFR deficient astrocytes also displayed altered mitochondrial structure and function and increased mitochondrial ROS production associated with the induction of an antioxidant response. However, IGFR deficient astrocytes were more sensitive to H2O2-induced cytotoxicity. Moreover, IGFR deficient astrocytes also showed significantly impaired glucose and Aß uptake, both critical functions of astrocytes in the brain. CONCLUSIONS: Regulation of astrocytic mitochondrial function and redox status by IGF-1 is essential to maintain astrocytic function and coordinate hippocampal-dependent spatial learning. Age-related astrocytic dysfunction caused by diminished IGF-1 signaling may contribute to the pathogenesis of Alzheimer's disease and other age-associated cognitive pathologies.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Memoria a Corto Plazo , Mitocondrias/metabolismo , Receptor IGF Tipo 1/genética , Envejecimiento/metabolismo , Animales , Células Cultivadas , Glucosa/metabolismo , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Receptor IGF Tipo 1/metabolismo , Transducción de Señal
15.
EMBO Rep ; 19(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29420235

RESUMEN

Caseinolytic peptidase P (ClpP) is a mammalian quality control protease that is proposed to play an important role in the initiation of the mitochondrial unfolded protein response (UPRmt), a retrograde signaling response that helps to maintain mitochondrial protein homeostasis. Mitochondrial dysfunction is associated with the development of metabolic disorders, and to understand the effect of a defective UPRmt on metabolism, ClpP knockout (ClpP-/-) mice were analyzed. ClpP-/- mice fed ad libitum have reduced adiposity and paradoxically improved insulin sensitivity. Absence of ClpP increased whole-body energy expenditure and markers of mitochondrial biogenesis are selectively up-regulated in the white adipose tissue (WAT) of ClpP-/- mice. When challenged with a metabolic stress such as high-fat diet, despite similar caloric intake, ClpP-/- mice are protected from diet-induced obesity, glucose intolerance, insulin resistance, and hepatic steatosis. Our results show that absence of ClpP triggers compensatory responses in mice and suggest that ClpP might be dispensable for mammalian UPRmt initiation. Thus, we made an unexpected finding that deficiency of ClpP in mice is metabolically beneficial.


Asunto(s)
Endopeptidasa Clp/genética , Resistencia a la Insulina/genética , Mitocondrias/genética , Obesidad/genética , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/genética , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Obesidad/metabolismo , Obesidad/patología , Respuesta de Proteína Desplegada/genética
16.
J Am Heart Assoc ; 6(12)2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29203581

RESUMEN

BACKGROUND: The healthy heart has a dynamic capacity to respond and adapt to changes in nutrient availability. Diabetes mellitus disrupts this metabolic flexibility and promotes cardiomyopathy through mechanisms that are not completely understood. Phosphofructokinase 2 (PFK-2) is a primary regulator of cardiac glycolysis and substrate selection, yet its regulation under normal and pathological conditions is unknown. This study was undertaken to determine how changes in insulin signaling affect PFK-2 content, activity, and cardiac metabolism. METHODS AND RESULTS: Streptozotocin-induced diabetes mellitus, high-fat diet feeding, and fasted mice were used to identify how decreased insulin signaling affects PFK-2 and cardiac metabolism. Primary adult cardiomyocytes were used to define the mechanisms that regulate PFK-2 degradation. Both type 1 diabetes mellitus and a high-fat diet induced a significant decrease in cardiac PFK-2 protein content without affecting its transcript levels. Overnight fasting also induced a decrease in PFK-2, suggesting it is rapidly degraded in the absence of insulin signaling. An unbiased metabolomic study demonstrated that decreased PFK-2 in fasted animals is accompanied by an increase in glycolytic intermediates upstream of phosphofructokianse-1, whereas those downstream are diminished. Mechanistic studies using cardiomyocytes showed that, in the absence of insulin signaling, PFK-2 is rapidly degraded via both proteasomal- and chaperone-mediated autophagy. CONCLUSIONS: The loss of PFK-2 content as a result of reduced insulin signaling impairs the capacity to dynamically regulate glycolysis and elevates the levels of early glycolytic intermediates. Although this may be beneficial in the fasted state to conserve systemic glucose, it represents a pathological impairment in diabetes mellitus.


Asunto(s)
Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Tipo 1/enzimología , Cardiomiopatías Diabéticas/enzimología , Glucólisis , Insulina/sangre , Miocardio/enzimología , Fosfofructoquinasa-2/metabolismo , Animales , Autofagia , Células Cultivadas , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/patología , Cardiomiopatías Diabéticas/sangre , Cardiomiopatías Diabéticas/etiología , Dieta con Restricción de Grasas , Dieta Alta en Grasa , Regulación hacia Abajo , Estabilidad de Enzimas , Ayuno/sangre , Ratones Endogámicos C57BL , Chaperonas Moleculares/metabolismo , Miocardio/patología , Fosfofructoquinasa-2/genética , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Transducción de Señal , Estreptozocina , Factores de Tiempo
17.
BMC Biol ; 15(1): 113, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29183319

RESUMEN

BACKGROUND: Peroxisome proliferator activated receptor-alpha (PPARα) is a ubiquitously expressed nuclear receptor. The role of endogenous PPARα in retinal neuronal homeostasis is unknown. Retinal photoreceptors are the highest energy-consuming cells in the body, requiring abundant energy substrates. PPARα is a known regulator of lipid metabolism, and we hypothesized that it may regulate lipid use for oxidative phosphorylation in energetically demanding retinal neurons. RESULTS: We found that endogenous PPARα is essential for the maintenance and survival of retinal neurons, with Pparα -/- mice developing retinal degeneration first detected at 8 weeks of age. Using extracellular flux analysis, we identified that PPARα mediates retinal utilization of lipids as an energy substrate, and that ablation of PPARα ultimately results in retinal bioenergetic deficiency and neurodegeneration. This may be due to PPARα regulation of lipid transporters, which facilitate the internalization of fatty acids into cell membranes and mitochondria for oxidation and ATP production. CONCLUSION: We identify an endogenous role for PPARα in retinal neuronal survival and lipid metabolism, and furthermore underscore the importance of fatty acid oxidation in photoreceptor survival. We also suggest PPARα as a putative therapeutic target for age-related macular degeneration, which may be due in part to decreased mitochondrial efficiency and subsequent energetic deficits.


Asunto(s)
Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , PPAR alfa/genética , Retina/metabolismo , Neuronas Retinianas/fisiología , Animales , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , PPAR alfa/metabolismo , Ratas , Ratas Sprague-Dawley
18.
J Biol Chem ; 292(11): 4423-4433, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28154187

RESUMEN

Alterations in mitochondrial function contribute to diabetic cardiomyopathy. We have previously shown that heart mitochondrial proteins are hyperacetylated in OVE26 mice, a transgenic model of type 1 diabetes. However, the universality of this modification and its functional consequences are not well established. In this study, we demonstrate that Akita type 1 diabetic mice exhibit hyperacetylation. Functionally, isolated Akita heart mitochondria have significantly impaired maximal (state 3) respiration with physiological pyruvate (0.1 mm) but not with 1.0 mm pyruvate. In contrast, pyruvate dehydrogenase activity is significantly decreased regardless of the pyruvate concentration. We found that there is a 70% decrease in the rate of pyruvate transport in Akita heart mitochondria but no decrease in the mitochondrial pyruvate carriers 1 and 2 (MPC1 and MPC2). The potential role of hyperacetylation in mediating this impaired pyruvate uptake was examined. The treatment of control mitochondria with the acetylating agent acetic anhydride inhibits pyruvate uptake and pyruvate-supported respiration in a similar manner to the pyruvate transport inhibitor α-cyano-4-hydroxycinnamate. A mass spectrometry selective reactive monitoring assay was developed and used to determine that acetylation of lysines 19 and 26 of MPC2 is enhanced in Akita heart mitochondria. Expression of a double acetylation mimic of MPC2 (K19Q/K26Q) in H9c2 cells was sufficient to decrease the maximal cellular oxygen consumption rate. This study supports the conclusion that deficient pyruvate transport activity, mediated in part by acetylation of MPC2, is a contributor to metabolic inflexibility in the diabetic heart.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Miocardio/patología , Ácido Pirúvico/metabolismo , Acetilación , Animales , Proteínas de Transporte de Anión/análisis , Diabetes Mellitus Tipo 1/patología , Cardiomiopatías Diabéticas/patología , Ácidos Grasos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Proteínas de Transporte de Membrana Mitocondrial/análisis , Miocardio/metabolismo , Oxidación-Reducción , Consumo de Oxígeno
19.
Cancer Lett ; 388: 149-157, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27939695

RESUMEN

Cancer cells have a unique metabolic profile and mitochondria have been shown to play an important role in chemoresistance, tumor progression and metastases. This unique profile can be exploited by mitochondrial-targeted anticancer therapies. A small anticancer molecule, AG311, was previously shown to possess anticancer and antimetastatic activity in two cancer mouse models and to induce mitochondrial depolarization. This study defines the molecular effects of AG311 on the mitochondria to elucidate its observed efficacy. AG311 was found to competitively inhibit complex I activity at the ubiquinone-binding site. Complex I as a target for AG311 was further established by measuring oxygen consumption rate in tumor tissue isolated from AG311-treated mice. Cotreatment of cells and animals with AG311 and dichloroacetate, a pyruvate dehydrogenase kinase inhibitor that increases oxidative metabolism, resulted in synergistic cell kill and reduced tumor growth. The inhibition of mitochondrial oxygen consumption by AG311 was found to reduce HIF-1α stabilization by increasing oxygen tension in hypoxic conditions. Taken together, these results suggest that AG311 at least partially mediates its antitumor effect through inhibition of complex I, which could be exploited in its use as an anticancer agent.


Asunto(s)
Complejo I de Transporte de Electrón/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Indoles/uso terapéutico , Pirimidinas/uso terapéutico , Animales , Hipoxia de la Célula , Humanos , Ratones
20.
Diabetes ; 65(12): 3585-3597, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27679559

RESUMEN

Impaired GLUT4-dependent glucose uptake is a contributing factor in the development of whole-body insulin resistance in obese patients and obese animal models. Previously, we demonstrated that transgenic mice engineered to express the human GLUT4 gene under the control of the human GLUT4 promoter (i.e., transgenic [TG] mice) are resistant to obesity-induced insulin resistance. A likely mechanism underlying increased insulin sensitivity is increased glucose uptake in skeletal muscle. The purpose of this study was to investigate the broader metabolic consequences of enhanced glucose uptake into muscle. We observed that the expression of several nuclear and mitochondrially encoded mitochondrial enzymes was decreased in TG mice but that mitochondrial number, size, and fatty acid respiration rates were unchanged. Interestingly, both pyruvate and glutamate respiration rates were decreased in TG mice. Metabolomics analyses of skeletal muscle samples revealed that increased GLUT4 transgene expression was associated with decreased levels of some tricarboxylic acid intermediates and amino acids, whereas the levels of several glucogenic amino acids were elevated. Furthermore, fasting acyl carnitines in obese TG mice were decreased, indicating that increased GLUT4-dependent glucose flux decreases nutrient stress by altering lipid and amino acid metabolism in skeletal muscle.


Asunto(s)
Aminoácidos/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Glucosa/metabolismo , Mitocondrias/metabolismo , Obesidad/metabolismo , Animales , Transporte Biológico/fisiología , Western Blotting , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Transportador de Glucosa de Tipo 4/genética , Glucógeno/metabolismo , Humanos , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/genética , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA