Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(15): 6595-6604, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38573735

RESUMEN

Meaningful interpretation of U isotope measurements relies on unraveling the impact of reduction mechanisms on the isotopic fractionation. Here, the isotope fractionation of hexavalent U [U(VI)] was investigated during its reductive mineralization by magnetite to intermediate pentavalent U [U(V)] and ultimately tetravalent U [U(IV)]. As the reaction proceeded, the remaining aqueous phase U [containing U(VI) and U(V)] systematically carried light isotopes, whereas in the bicarbonate-extracted solution [containing U(VI) and U(V)], the δ238U values varied, especially when C/C0 approached 0. This variation was interpreted as reflecting the variable relative contribution of unreduced U(VI) (δ238U < 0‰) and bicarbonate-extractable U(V) (δ238U > 0‰). The solid remaining after bicarbonate extraction included unextractable U(V) and U(IV), for which the δ238U values consistently followed the same trend that started at 0.3-0.5‰ and decreased to ∼0‰. The impact of PIPES buffer on isotopic fractionation was attributed to the variable abundance of U(V) in the aqueous phase. A few extremely heavy bicarbonate-extracted δ238U values were due to mass-dependent fractionation resulting from several hypothesized mechanisms. The results suggest the preferential accumulation of the heavy isotope in the reduced species and the significant influence of U(V) on the overall isotopic fractionation, providing insight into the U isotope fractionation behavior during its abiotic reduction process.


Asunto(s)
Óxido Ferrosoférrico , Uranio , Bicarbonatos , Isótopos , Fraccionamiento Químico
2.
Dalton Trans ; 53(5): 2252-2264, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38193888

RESUMEN

This work is the first attempt to prepare Nd1-xCaxUxPO4 monazite-cheralite with 0 < x ≤ 0.1 by a wet chemistry method. This method relies on the precipitation under hydrothermal conditions (T = 110 °C for four days) of the Nd1-xCaxUxPO4·nH2O rhabdophane precursor, followed by its thermal conversion for 6 h at 1100 °C in air or Ar atmosphere. The optimized synthesis protocol led to the incorporation of U and Ca in the rhabdophane structure. After heating at 1100 °C for 6 h in air, single-phase monazite-cheralite samples were obtained. However, α-UP2O7 was identified as a secondary minor phase in the samples heated under Ar atmosphere. The U speciation in the samples converted in an oxidising atmosphere was carefully characterized using synchrotron radiation by combining HERFD-XANES and XRD. These results showed the presence of a minor secondary phase containing hexavalent uranium and phosphate with a stoichiometry of U : P = 0.78. This highly labile uranyl phosphate phase incorporated 21 mol% of the uranium initially precipitated with the rhabdophane precursor. This phase was completely removed by a washing protocol. Thus, single-phase monazite-cheralite was obtained through the wet chemistry route described in this work with a maximum U loading of x = 0.08.

3.
Inorg Chem ; 62(19): 7173-7185, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37133506

RESUMEN

Although uranium-cerium dioxides are frequently used as a surrogate material for (U,Pu)O2-δ nuclear fuels, there is currently no reliable data regarding the oxygen stoichiometry and redox speciation of the cations in such samples. In order to fill this gap, this manuscript details a synchrotron study of highly homogeneous (U,Ce)O2±Î´ sintered samples prepared by a wet-chemistry route. HERFD-XANES spectroscopy led to determining accurately the O/M ratios (with M = U + Ce). Under a reducing atmosphere (pO2 ≈ 6 × 10-29 atm at 650 °C), the oxides were found to be close to O/M = 2.00, while the O/M ratio varied with the sintering conditions under argon (pO2 ≈ 3 × 10-6 atm at 650 °C). They globally appeared to be hyperstoichiometric (i.e., O/M > 2.00) with the departure from the dioxide stoichiometry decreasing with both the cerium content in the sample and the sintering temperature. Nevertheless, such a deviation from the ideal O/M = 2.00 ratio was found to generate only moderate structural disorder from EXAFS data at the U-L3 edge as all the samples retained the fluorite-type structure of the UO2 and CeO2 parent compounds. The determination of accurate lattice parameters owing to S-PXRD measurements led to complementing the data reported in the literature by various authors. These data were consistent with an empirical relation linking the unit cell parameter, the chemical composition, and the O/M stoichiometry, showing that the latter can be evaluated simply within a ± 0.02 uncertainty.

4.
Environ Sci Nano ; 9(4): 1509-1518, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35520632

RESUMEN

The aim of this study is to synthesize PuO2 nanoparticles (NPs) at low pH values and characterize the materials using laboratory and synchrotron-based methods. Properties of the PuO2 NPs formed under acidic conditions (pH 1-4) are explored here at the atomic scale. High-resolution transmission electron microscopy (HRTEM) is applied to characterize the crystallinity, morphology and size of the particles. It is found that 2 nm crystalline NPs are formed with a PuO2 crystal structure. High energy resolution fluorescence detected (HERFD) X-ray absorption spectroscopy at the Pu M4 edge has been used to identify the Pu oxidation states and recorded data are analysed using the theory based on the Anderson impurity model (AIM). The experimental data obtained on NPs show that the Pu(iv) oxidation state dominates in all NPs formed at pH 1-4. However, the suspension at pH 1 demonstrates the presence of Pu(iii) and Pu(vi) in addition to the Pu(iv), which is associated with redox dissolution of PuO2 NPs under acidic conditions. We discuss in detail the mechanism that affects the PuO2 NPs synthesis under acidic conditions and compare it with one in neutral and alkaline conditions. Hence, the results shown here, together with the first Pu M4 HERFD data on PuF3 and PuF4 compounds, are significant for the colloid facilitated transport governing the migration of plutonium in a subsurface environment.

5.
Chemosphere ; 264(Pt 1): 128473, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33035952

RESUMEN

Investigating uranium migration mechanisms related to the weathering of waste rocks is essential for developing strategies that can address the potential environmental issues caused by uranium mining. This work is based on environmental samples containing 2 L ferrihydrite, lepidocrocite and goethite collected in the technosols from granitic waste rock piles, mine drainage conduits and mine waters. The results show the important role of iron oxyhydroxide in U immobilization and re-concentration. EXAFS spectroscopy combined with mineralogical and geochemical studies (Scanning electronic microscopy, Wavelength-dispersive X-ray spectroscopy microprobe, inductively coupled plasma - optical emission spectrometry/mass spectrometry and X-ray diffraction) allowed for the identification of uranyl ternary surface complexes at the ferrihydrite surface that were either composed of phosphate groups or organic matter. Moreover, goethite and lepidocrocite were also identified as a secondary trap for U immobilization. U(VI) is known to be mobile in oxidizing conditions. This study highlights the control of the uranyl mobility by various iron oxyhydroxides in supergene conditions.


Asunto(s)
Uranio , Compuestos Férricos , Minería , Espectrometría por Rayos X , Uranio/análisis , Difracción de Rayos X
6.
Inorg Chem ; 59(20): 14954-14966, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32996765

RESUMEN

Hydrothermal conversion of thorium oxalate, Th(C2O4)2·nH2O, into thorium dioxide was explored through a multiparametric study, leading to some guidelines for the preparation of crystallized samples with the minimum amount of impurities. As the formation of the oxide appeared to be operated through the hydrolysis of Th4+ after decomposition of oxalate fractions, pH values typically above 1 must be considered to recover a solid phase. Also, because of the high stability of the thorium oxalate precursor, hydrothermal treatments of more than 5 h at a temperature above 220 °C were required. All the ThO2·nH2O samples prepared presented amounts of residual carbon and water in the range 0.2-0.3 wt % and n ≈ 0.5, respectively. A combined FTIR, PXRD, and EXAFS study showed that these impurities mainly consisted of carbonates trapped between elementary nanosized crystallites, rather than substituted directly in the lattice, which generated a tensile effect over the crystal lattice. The presence of carbonates at the surface of the elementary crystallites could also explain their tendency to self-assembly, leading to the formation of spherical aggregates. Hydrothermal conversion of oxalates could then find its place in different processes of the nuclear fuel cycle, where it will provide an interesting opportunity to set up dustless routes leading from ions in solution to dioxide powders in a limited number of steps.

7.
Inorg Chem ; 59(17): 11889-11893, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32846087

RESUMEN

The chemical properties of actinide materials are often predefined and described based on the data available for isostructural species. This is the case for potassium plutonyl (PuVI) carbonate, K4PuVIO2(CO3)3(cr), a complex relevant for nuclear technology and the environment, of which the crystallographic and thermodynamic properties of which are still lacking. We report here the synthesis and characterization of PuVI achieved by single-crystal X-ray diffraction analysis and high-energy-resolution fluorescence-detected X-ray absorption near-edge structure at the Pu M4-edge coupled with electronic structure calculations. The crystallographic properties of PuVI are compared with isostructural uranium (U) and neptunium (Np) compounds. Actinyl (AnVI) axial bond lengths, [O-AnVI-O]2+, are correlated between solid, K4AnVIO2(CO3)3(cr), and aqueous, [AnVIO2(CO3)3]4-(aq) species for the UVI-NpVI-PuVI series. The spectroscopic data are compared to KPuVO2CO3(cr) and PuIVO2(cr) to tackle the trend in the electronic structure of PuVI regarding the oxidation state changes and local structural modifications around the Pu atom.

8.
Nanoscale ; 12(35): 18039-18048, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32648876

RESUMEN

The nanoscience field often produces results more mystifying than any other discipline. It has been argued that changes in the plutonium dioxide (PuO2) particle size from bulk to nano can have a drastic effect on PuO2 properties. Here we report a full characterization of PuO2 nanoparticles (NPs) at the atomic level and probe their local and electronic structures by a variety of methods available at the synchrotron, including extended X-ray absorption fine structure (EXAFS) at the Pu L3 edge, X-ray absorption near edge structure (XANES) in high energy resolution fluorescence detection (HERFD) mode at the Pu L3 and M4 edges, high energy X-ray scattering (HEXS) and X-ray diffraction (XRD). The particles were synthesized from precursors with different oxidation states of plutonium (III, IV, and V) under various environmentally and waste storage relevant conditions (pH 8 and pH > 10). Our experimental results analyzed with state-of-the-art theoretical approaches demonstrate that well dispersed, crystalline NPs with a size of ∼2.5 nm in diameter are always formed in spite of diverse chemical conditions. Identical crystal structures and the presence of only the Pu(iv) oxidation state in all NPs, reported here for the first time, indicate that the structure of PuO2 NPs is very similar to that of the bulk PuO2. All methods give complementary information and show that investigated fundamental properties of PuO2 NPs, rather than being exotic, are very similar to those of the bulk PuO2.

9.
Inorg Chem ; 59(12): 8589-8602, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32484336

RESUMEN

The thermal decomposition of actinide oxalates is greatly dependent on the oxidation state of the cation, the gas involved, and the physical characteristics of the precursor. In the actinides series, uranium(IV) oxalate U(C2O4)2·6H2O can be viewed as a peculiar case, as its sensibility toward oxidation leads to a specific series of reactions when heating under an oxygen atmosphere. In order to clarify the disagreements existing in the literature, particularly concerning potential carbonate intermediates and the possible transitory existence of UO3, we show here an extended characterization of the different intermediates through a combination of X-ray diffraction, vibrational spectroscopies and X-ray absorption near-edge spectroscopy. In this frame, uranium oxidation was found to occur at low temperature (200 °C) concomitantly to the onset of oxalate groups decomposition, leading to an amorphous oxo-oxalato compound. Pursuing the thermal conversion up to 350 °C led to complete oxidation of U(IV) into U(VI), then to the formation of amorphous UO3 still bearing adsorbed carbonates. The first pure oxide formed during the thermal conversion was further identified to substoichiometric UO3-δ after heating at 550 °C. Finally, U3O8 was obtained as the final stable phase after heating above 660 °C. The mechanism of thermal conversion of uranium(IV) oxalate into oxide under oxygen is then driven by a complex interplay between redox reactions and decomposition of the organic fractions. Such chemical reactions were also found to significantly modify the morphology of the powder through high-temperature environmental scanning electron microscopy observations: decomposition led to a 20% reduction in the size of the aggregates, while uranium oxidation clearly promoted growth within the agglomerates.

10.
Chem Rev ; 120(9): 4056-4110, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32275144

RESUMEN

We review oxygen K-edge X-ray absorption spectra of both molecules and solids. We start with an overview of the main experimental aspects of oxygen K-edge X-ray absorption measurements including X-ray sources, monochromators, and detection schemes. Many recent oxygen K-edge studies combine X-ray absorption with time and spatially resolved measurements and/or operando conditions. The main theoretical and conceptual approximations for the simulation of oxygen K-edges are discussed in the Theory section. We subsequently discuss oxygen atoms and ions, binary molecules, water, and larger molecules containing oxygen, including biomolecular systems. The largest part of the review deals with the experimental results for solid oxides, starting from s- and p-electron oxides. Examples of theoretical simulations for these oxides are introduced in order to show how accurate a DFT description can be in the case of s and p electron overlap. We discuss the general analysis of the 3d transition metal oxides including discussions of the crystal field effect and the effects and trends in oxidation state and covalency. In addition to the general concepts, we give a systematic overview of the oxygen K-edges element by element, for the s-, p-, d-, and f-electron systems.

11.
Inorg Chem ; 59(5): 3260-3273, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32043870

RESUMEN

Within the development of future nuclear reactors, wet chemistry routes have been investigated for the fabrication of advanced oxide fuels. In this frame, a multiparametric study focused on the hydrothermal conversion of uranium(IV) oxalate U(C2O4)2·nH2O into uranium oxides was undertaken in order to unravel the effects of temperature, pH, and kinetics. For pH ≤ 1, the lowest temperatures explored (typically from 180 to 200 °C) led to stabilized UO2+x/U4O9 mixtures exhibiting a global O/U ratio evaluated as 2.38 ± 0.10 from U M4-edge HERFD-XANES experiments. Higher temperatures (220-250 °C) led the oxide stoichiometry to decrease down to 2.13 ± 0.04 which corresponds to a lower fraction of U4O9 in the mixture. Additionally, increasing the temperature of the hydrothermal treatment efficiently improved the elimination of residual carbon species and water. Hydrothermal conversion of U(C2O4)2·nH2O also led to a drastic modification of the powders morphology. With this aim, pH tuning could be used to shift from bipyramidal aggregates (up to pH 1) to microspheres (2 ≤ pH ≤ 5) and then to nanometric powders (pH > 5). Finally, a kinetics study showed that uranium oxides can be obtained from the hydrothermal decomposition of oxalate within only few hours. If the samples collected early during the treatment always presented the characteristic XRD lines of UO2+x/U4O9 fluorite-type structure, then they were found to be strongly oxidized (O/U = 2.65 ± 0.14) which suggested the existence of a U(VI)-bearing amorphous secondary phase. The latter further tended to reduce through time. Hydrothermal conversion then probably proceeds as a two-step mechanism composed by the oxidative decomposition of uranium(IV) oxalate followed by the reduction of uranium by organic moieties and its hydrolysis. It appears as an easy and efficient way to yield highly pure uranium oxide samples in solution.

12.
Inorg Chem ; 58(10): 6858-6865, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31025856

RESUMEN

Determining the uranyl(VI) UO22+ reactivity in crystalline and amorphous oxides is necessary to control its mobility. The intrinsic versatility of borate structural units containing both triangular BO3 and tetrahedral BO4 makes them original and rich hosts for uranyl. As part of the effort to determine the uranium stability in borate oxides, we have determined the speciation of uranium(VI) in two lithium borate glasses containing, respectively, 10 mol % and 30 mol % Li2O using a combined structural and spectroscopic approach based on X-ray absorption spectroscopy (XAS). M4- and L3-edge high-resolution XAS demonstrates the speciation of U(VI) as uranyl in both glasses. Comparison of uranyl bond distances obtained by EXAFS with distances found in borate crystals reveals that in the low alkali borate glass, uranyl is present as hexagonal bipyramids with six equatorial oxygen ligands. This local environment was never observed in any other oxide glass. We show that the increase of the lithium content induces the decrease of the equatorial coordination number. The associated uranyl bond elongation suggests the influence of the alkali cations in relation with drastic changes in the structure of the borate network. The spectroscopic evidence of this speciation change is discussed in terms of change in the uranyl electronic structure and covalency.

13.
Sci Rep ; 9(1): 3287, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824744

RESUMEN

The Grande Rose of Reims Cathedral (France), a UNESCO Cultural Heritage Monument from the 13th century, underwent several restoration works during the 20th century. Its colours result from centuries of colour management from which little information remain. We used non-destructive and portable optical absorption spectroscopy to quantify glass colour and determine the colouring species on a large-scale study of this monumental window. We found six distinct colour groups, each containing both medieval and modern glasses, with colouring processes specific to each colour. This illustrates medieval glassmakers' mastering of glass colouring and modern glassmakers' management to reproduce medieval glasses colours. Full UV-visible-NIR energy range is necessary for determining the contribution of colouring elements as Fe2+ and Cu2+. Systematic thickness measurements reveal an average glass thickness of 3 mm and demonstrate the major control of chromophore concentration on glass colour. Yellow, red and purple colours arise from a single chromophore each, suggesting the use of well-defined glassmaking techniques leading to robust colour reproducibility. By contrast, blue and green glasses show different chromophore combinations depending on production time, which suggests more diversity in glassmaking techniques.

14.
J Phys Chem A ; 122(18): 4399-4413, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29660293

RESUMEN

The role of transition metals in chemical reactions is often derived from probing the metal 3d states. However, the relation between metal site geometry and 3d electronic states, arising from multielectronic effects, makes the spectral data interpretation and modeling of these optical excited states a challenge. Here we show, using the well-known case of red ruby, that unique insights into the density of transition metal 3d excited states can be gained with 2p3d resonant inelastic X-ray scattering (RIXS). We compare the experimental determination of the 3d excited states of Cr3+ impurities in Al2O3 with 190 meV resolution 2p3d RIXS to optical absorption spectroscopy and to simulations. Using the crystal field multiplet theory, we calculate jointly for the first time the Cr3+ multielectronic states, RIXS, and optical spectra based on a unique set of parameters. We demonstrate that (i) anisotropic 3d multielectronic interactions causes different scaling of Slater integrals, and (ii) a previously not observed doublet excited state exists around 3.35 eV. These results allow to discuss the influence of interferences in the RIXS intermediate state, of core-hole lifetime broadenings, and of selection rules on the RIXS intensities. Finally, our results demonstrate that using an intermediate excitation energy between L3 and L2 edges allows measurement of the density of 3d excited states as a fingerprint of the metal local structure. This opens up a new direction to pump-before-destroy investigations of transition metal complex structures and reaction mechanisms.

15.
Inorg Chem ; 56(18): 10882-10892, 2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28872322

RESUMEN

Metal-metal charge transfer (MMCT) is expected to be the main mechanism that enables the harvesting of solar light by iron-titanium oxides for photocatalysis. We have studied FeTiO3 as a model compound for MMCT with 1s2pRIXS at the Fe K-edge. The high-energy resolution XANES enables distinguishing five pre-edge features. The three first well distinct RIXS features are assigned to electric quadrupole transitions to the localized Fe* 3d states, shifted to lower energy by the 1s core-hole. Crystal field multiplet calculations confirm the speciation of divalent iron. The contribution of electric dipole absorption due to local p-d mixing allowed by the trigonal distortion of the cation site is supported by DFT and CFM calculations. The two other nonlocal features are assigned to electric dipole transitions to excited Fe* 4p states mixed with the neighboring Ti 3d states. The comparison with DFT calculations demonstrates that MMCT in ilmenite is favored by the hybridization between the Fe 4p and delocalized Ti 3d orbitals via the O 2p orbitals.

16.
Anal Chem ; 89(11): 6277-6284, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28494150

RESUMEN

The sophisticated colors of medieval glasses arise from their transition metal (TM) impurities and capture information about ancient glassmaking techniques. Beyond the glass chemical composition, the TM redox is also a key factor in the glass color, but its quantification without any sampling is a challenge. We report a combination of nondestructive and noninvasive quantitative analyses of the chemical composition by particle-induced X-ray emission-particle-induced γ-ray emission mappings and of the color and TM element speciation by optical absorption spectroscopy performed on a red-blue-purple striped glass from the stained glass windows of the Sainte-Chapelle in Paris, France, during its restoration. These particular glass pieces must have been produced as a single shot, which guarantees that the chemical variations reflect the recipe in use in a specific medieval workshop. The quantitative elemental mappings demonstrate that the colored glass parts are derived from the same base glass, to which TMs were deliberately added. Optical absorption spectra reveal the origin of the colors: blue from CoII, red from copper nanoparticles, and purple from MnIII. Furthermore, the derivation of the quantitative redox state of each TM in each color shows that the contents of Fe, Cu, and Mn were adjusted to ensure a reducing glass matrix in the red stripe or a metastable overoxidized glass in the purple stripe. We infer that the agility of the medieval glassmaker allowed him to master the redox kinetics in the glass by rapid shaping and cooling to obtain a snapshot of the thermodynamically unstable glass colors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA