Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Front Integr Neurosci ; 17: 1128529, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969493

RESUMEN

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a repeat expansion mutation in the promotor region of the FMR1 gene resulting in transcriptional silencing and loss of function of fragile X messenger ribonucleoprotein 1 protein (FMRP). FMRP has a well-defined role in the early development of the brain. Thus, loss of the FMRP has well-known consequences for normal cellular and synaptic development leading to a variety of neuropsychiatric disorders including an increased prevalence of amygdala-based disorders. Despite our detailed understanding of the pathophysiology of FXS, the precise cellular and circuit-level underpinnings of amygdala-based disorders is incompletely understood. In this review, we discuss the development of the amygdala, the role of neuromodulation in the critical period plasticity, and recent advances in our understanding of how synaptic and circuit-level changes in the basolateral amygdala contribute to the behavioral manifestations seen in FXS.

2.
J Neurosci ; 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35970562

RESUMEN

Fragile X Syndrome (FXS) is a neurodevelopmental disorder and the most common monogenic cause of intellectual disability, autism spectrum disorders (ASDs) and anxiety disorders. Loss of fragile x mental retardation protein (FMRP) results in disruptions of synaptic development during a critical period (CP) of circuit formation in the basolateral amygdala (BLA). However, it is unknown how these alterations impact microcircuit development and function. Using a combination of electrophysiologic and behavioral approaches in both male (Fmr1-/y) and female (Fmr1-/-) mice, we demonstrate that principal neurons (PNs) in the Fmr1KO BLA exhibit hyperexcitability during a sensitive period in amygdala development. This hyperexcitability contributes to increased excitatory gain in fear-learning circuits. Further, synaptic plasticity is enhanced in the BLA of Fmr1KO mice. Behavioral correlation demonstrates that fear-learning emerges precociously in the Fmr1KO mouse. Early life THIP intervention ameliorates fear-learning in Fmr1KO mice. These results suggest that CP plasticity in the amygdala of the Fmr1KO mouse may be shifted to earlier developmental timepoints.SIGNIFICANCE STATEMENTIn these studies we identify early developmental alterations in principal neurons in the FXS BLA. We show that as early as P14, excitability and feed-forward excitation, and synaptic plasticity is enhanced in Fmr1KO lateral amygdala. This correlates with precocious emergence of fear-learning in the Fmr1KO mouse. Early life THIP intervention restores CP plasticity in WT mice and ameliorates fear-learning in the Fmr1KO mouse.

3.
eNeuro ; 8(3)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33893168

RESUMEN

Fragile X syndrome (FXS) is a neurodevelopmental disorder (NDD) characterized by intellectual disability, autism spectrum disorders (ASDs), and anxiety disorders. The disruption in the function of the FMR1 gene results in a range of alterations in cellular and synaptic function. Previous studies have identified dynamic alterations in inhibitory neurotransmission in early postnatal development in the amygdala of the mouse model of FXS. However, little is known about how these changes alter microcircuit development and plasticity in the lateral amygdala (LA). Using whole-cell patch clamp electrophysiology, we demonstrate that principal neurons (PNs) in the LA exhibit hyperexcitability with a concomitant increase in the synaptic strength of excitatory synapses in the BLA. Further, reduced feed-forward inhibition appears to enhance synaptic plasticity in the FXS amygdala. These results demonstrate that plasticity is enhanced in the amygdala of the juvenile Fmr1 knock-out (KO) mouse and that E/I imbalance may underpin anxiety disorders commonly seen in FXS and ASDs.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Amígdala del Cerebelo/metabolismo , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Ratones , Ratones Noqueados , Sinapsis/metabolismo , Transmisión Sináptica
4.
Front Cell Neurosci ; 14: 141, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581716

RESUMEN

Successful completion of sensory decision-making requires focusing on relevant stimuli, adequate signal/noise ratio for stimulus discrimination, and stimulus valence evaluation. Different brain regions are postulated to play a role in these computations; however, evidence suggests that sensory and decision-making circuits are required to interact through a common neuronal pathway to elicit a context-adequate behavioral response. Recently, the basal forebrain (BF) region has emerged as a good candidate, since its heterogeneous projecting neurons innervate most of the cortical mantle and sensory processing circuits modulating different aspects of the sensory decision-making process. Moreover, evidence indicates that the BF plays an important role in attention and in fast modulation of neuronal activity that enhance visual and olfactory sensory perception. Here, we study in awake mice the involvement of BF in initiation and completion of trials in a reward-driven olfactory detection task. Using tetrode recordings, we find that BF neurons (including cholinergics) are recruited during sensory discrimination, reward, and interestingly slightly before trial initiation in successful discrimination trials. The precue neuronal activity was correlated with animal performance, indicating that this circuit could play an important role in adaptive context-dependent behavioral responses.

5.
eNeuro ; 7(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-31953317

RESUMEN

The auditory brainstem compares sound-evoked excitation and inhibition from both ears to compute sound source location and determine spatial acuity. Although alterations to the anatomy and physiology of the auditory brainstem have been demonstrated in fragile X syndrome (FXS), it is not known whether these changes cause spatial acuity deficits in FXS. To test the hypothesis that FXS-related alterations to brainstem circuits impair spatial hearing abilities, a reflexive prepulse inhibition (PPI) task, with variations in sound (gap, location, masking) as the prepulse stimulus, was used on Fmr1 knock-out mice and B6 controls. Specifically, Fmr1 mice show decreased PPI compared with wild-type mice during gap detection, changes in sound source location, and spatial release from masking with no alteration to their overall startle thresholds compared with wild-type mice. Last, Fmr1 mice have increased latency to respond in these tasks, suggesting additional impairments in the pathway responsible for reacting to a startling sound. This study further supports data in humans with FXS that show similar deficits in PPI.


Asunto(s)
Síndrome del Cromosoma X Frágil , Audición , Estimulación Acústica , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Ratones , Ratones Noqueados
6.
Elife ; 92020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31916940

RESUMEN

The basolateral amygdala (BLA) plays a vital role in associating sensory stimuli with salient valence information. Excitatory principal neurons (PNs) undergo plastic changes to encode this association; however, local BLA inhibitory interneurons (INs) gate PN plasticity via feedforward inhibition (FFI). Despite literature implicating parvalbumin expressing (PV+) INs in FFI in cortex and hippocampus, prior anatomical experiments in BLA implicate somatostatin expressing (Sst+) INs. The lateral entorhinal cortex (LEC) projects to BLA where it drives FFI. In the present study, we explored the role of interneurons in this circuit. Using mice, we combined patch clamp electrophysiology, chemogenetics, unsupervised cluster analysis, and predictive modeling and found that a previously unreported subpopulation of fast-spiking Sst+ INs mediate LEC→BLA FFI.


Asunto(s)
Complejo Nuclear Basolateral/fisiología , Corteza Entorrinal/fisiología , Neuronas/fisiología , Animales , Complejo Nuclear Basolateral/patología , Análisis por Conglomerados , Electrofisiología , Corteza Entorrinal/patología , Hipocampo/fisiología , Interneuronas , Ratones , Modelos Animales , Parvalbúminas/metabolismo , Fenotipo
7.
J Cell Physiol ; 234(9): 16389-16399, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30746686

RESUMEN

We studied the effects of electrical stimulation on insulin release from rat insulinoma (INS-1) cells. The anodal/cathodal biphasic stimulation (ACBPS) electrical waveform resulted in a voltage- and stimulation duration-dependent increase in insulin release. ACBPS elicited insulin release both in the presence and absence of glucose. Basal and ACBPS-induced insulin secretion could be inhibited by mitochondrial poisons and calcium channel blockers, indicating that insulin release was dependent on adenosine triphosphate (ATP) and the influx of calcium. ACBPS parameters that released insulin caused no detectable plasma membrane damage or cytotoxicity, although temporary morphological changes could be observed immediately after ACBPS. ACBPS did not alter the plasma membrane transmembrane potential but did cause pronounced uptake of MitoTracker Red into the mitochondrial membrane, indicating an increased mitochondrial membrane potential. While the ATP:ADP ratio after ACBPS did not change, the guanosine triphosphate (GTP) levels increased and increased GTP levels have previously been associated with insulin release in INS-1 cells. These results provide evidence that ACBPS can have significant biological effects on cells. In the case of INS-1 cells, ACBPS promotes insulin release without causing cytotoxicity.

8.
Neuron ; 96(2): 387-401.e6, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-29024662

RESUMEN

Because molecular mechanisms underlying refractory focal epilepsy are poorly defined, we performed transcriptome analysis on human epileptogenic tissue. Compared with controls, expression of Circadian Locomotor Output Cycles Kaput (CLOCK) is decreased in epileptogenic tissue. To define the function of CLOCK, we generated and tested the Emx-Cre; Clockflox/flox and PV-Cre; Clockflox/flox mouse lines with targeted deletions of the Clock gene in excitatory and parvalbumin (PV)-expressing inhibitory neurons, respectively. The Emx-Cre; Clockflox/flox mouse line alone has decreased seizure thresholds, but no laminar or dendritic defects in the cortex. However, excitatory neurons from the Emx-Cre; Clockflox/flox mouse have spontaneous epileptiform discharges. Both neurons from Emx-Cre; Clockflox/flox mouse and human epileptogenic tissue exhibit decreased spontaneous inhibitory postsynaptic currents. Finally, video-EEG of Emx-Cre; Clockflox/flox mice reveals epileptiform discharges during sleep and also seizures arising from sleep. Altogether, these data show that disruption of CLOCK alters cortical circuits and may lead to generation of focal epilepsy.


Asunto(s)
Encéfalo/metabolismo , Proteínas CLOCK/deficiencia , Proteínas CLOCK/genética , Epilepsias Parciales/genética , Epilepsias Parciales/metabolismo , Red Nerviosa/metabolismo , Animales , Encéfalo/patología , Células Cultivadas , Epilepsias Parciales/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/patología , Estudios Prospectivos
9.
J Comp Neurol ; 525(16): 3543-3562, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28744893

RESUMEN

Hyperexcitability and the imbalance of excitation/inhibition are one of the leading causes of abnormal sensory processing in Fragile X syndrome (FXS). The precise timing and distribution of excitation and inhibition is crucial for auditory processing at the level of the auditory brainstem, which is responsible for sound localization ability. Sound localization is one of the sensory abilities disrupted by loss of the Fragile X Mental Retardation 1 (Fmr1) gene. Using triple immunofluorescence staining we tested whether there were alterations in the number and size of presynaptic structures for the three primary neurotransmitters (glutamate, glycine, and GABA) in the auditory brainstem of Fmr1 knockout mice. We found decreases in either glycinergic or GABAergic inhibition to the medial nucleus of the trapezoid body (MNTB) specific to the tonotopic location within the nucleus. MNTB is one of the primary inhibitory nuclei in the auditory brainstem and participates in the sound localization process with fast and well-timed inhibition. Thus, a decrease in inhibitory afferents to MNTB neurons should lead to greater inhibitory output to the projections from this nucleus. In contrast, we did not see any other significant alterations in balance of excitation/inhibition in any of the other auditory brainstem nuclei measured, suggesting that the alterations observed in the MNTB are both nucleus and frequency specific. We furthermore show that glycinergic inhibition may be an important contributor to imbalances in excitation and inhibition in FXS and that the auditory brainstem is a useful circuit for testing these imbalances.


Asunto(s)
Vías Auditivas/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Inhibición Neural/genética , Localización de Sonidos/fisiología , Cuerpo Trapezoide/patología , Animales , Modelos Animales de Enfermedad , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Regulación de la Expresión Génica/genética , Glutamato Descarboxilasa/metabolismo , Ácido Glutámico/metabolismo , Glicina/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
10.
J Neurosci Res ; 94(6): 568-78, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26308557

RESUMEN

Alterations in the ratio of excitatory to inhibitory transmission are emerging as a common component of many nervous system disorders, including autism spectrum disorders (ASDs). Tonic γ-aminobutyric acidergic (GABAergic) transmission provided by peri- and extrasynaptic GABA type A (GABAA ) receptors powerfully controls neuronal excitability and plasticity and, therefore, provides a rational therapeutic target for normalizing hyperexcitable networks across a variety of disorders, including ASDs. Our previous studies revealed tonic GABAergic deficits in principal excitatory neurons in the basolateral amygdala (BLA) in the Fmr1(-/y) knockout (KO) mouse model fragile X syndrome. To correct amygdala deficits in tonic GABAergic neurotransmission in Fmr1(-/y) KO mice, we developed a novel positive allosteric modulator of GABAA receptors, SGE-872, based on endogenously active neurosteroids. This study shows that SGE-872 is nearly as potent and twice as efficacious for positively modulating GABAA receptors as its parent molecule, allopregnanolone. Furthermore, at submicromolar concentrations (≤1 µM), SGE-872 is selective for tonic, extrasynaptic α4ß3δ-containing GABAA receptors over typical synaptic α1ß2γ2 receptors. We further find that SGE-872 strikingly rescues the tonic GABAergic transmission deficit in principal excitatory neurons in the Fmr1(-/y) KO BLA, a structure heavily implicated in the neuropathology of ASDs. Therefore, the potent and selective action of SGE-872 on tonic GABAA receptors containing α4 subunits may represent a novel and highly useful therapeutic avenue for ASDs and related disorders involving hyperexcitability of neuronal networks.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Moduladores del GABA/farmacología , Potenciales de la Membrana/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/patología , Animales , Animales Recién Nacidos , Células CHO , Cricetulus , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , GABAérgicos/farmacología , Compuestos Heterocíclicos con 2 Anillos/química , Compuestos Heterocíclicos con 2 Anillos/farmacología , Técnicas In Vitro , Potenciales de la Membrana/genética , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Pregnanolona/análogos & derivados , Pregnanolona/química , Pregnanolona/farmacología , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Transfección , Ácido gamma-Aminobutírico/farmacología
11.
Neurobiol Dis ; 77: 246-56, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25769812

RESUMEN

In this study, we analyzed the impact that spontaneous seizures might have on the plasma membrane expression, composition and function of GABAA receptors (GABAARs). For this, the tissue of chronically epileptic rats was collected within 3h of seizure occurrence (≤3h group) or at least 24h after seizure occurrence (≥24h group). A retrospective analysis of seizure frequency revealed that selecting animals on the bases of seizure proximity also grouped animals in terms of overall seizure burden with a higher seizure burden observed in the ≤3h group. A biochemical analysis showed that although animals with more frequent/recent seizures (≤3h group) had similar levels of GABAAR at the plasma membrane they showed deficits in inhibitory neurotransmission. By contrast, the tissue obtained from animals experiencing infrequent seizures (≥24h group) had increased plasma membrane levels of GABAAR and showed no deficit in inhibitory function. Together, our findings offer an initial insight into the molecular changes that might help to explain how alterations in GABAAR function can be associated with differential seizure burden. Our findings also suggest that increased plasma membrane levels of GABAAR might act as a compensatory mechanism to more effectively maintain inhibitory function, repress hyperexcitability and reduce seizure burden. This study is an initial step towards a fuller characterization of the molecular events that trigger alterations in GABAergic neurotransmission during chronic epilepsy.


Asunto(s)
Receptores de GABA-A/metabolismo , Estado Epiléptico/metabolismo , Animales , Biotinilación , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/farmacología , Agonistas del GABA/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/patología , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Isoxazoles/farmacología , Masculino , Agonistas Muscarínicos/toxicidad , Neuronas/efectos de los fármacos , Pilocarpina/toxicidad , Quinoxalinas/farmacología , Ratas , Ratas Sprague-Dawley , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Valina/análogos & derivados , Valina/farmacología
12.
PLoS One ; 9(10): e109303, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25290690

RESUMEN

The dysfunction of parvalbumin-positive, fast-spiking interneurons (FSI) is considered a primary contributor to the pathophysiology of schizophrenia (SZ), but deficits in FSI physiology have not been explicitly characterized. We show for the first time, that a widely-employed model of schizophrenia minimizes first spike latency and increases GluN2B-mediated current in neocortical FSIs. The reduction in FSI first-spike latency coincides with reduced expression of the Kv1.1 potassium channel subunit which provides a biophysical explanation for the abnormal spiking behavior. Similarly, the increase in NMDA current coincides with enhanced expression of the GluN2B NMDA receptor subunit, specifically in FSIs. In this study mice were treated with the NMDA receptor antagonist, MK-801, during the first week of life. During adolescence, we detected reduced spike latency and increased GluN2B-mediated NMDA current in FSIs, which suggests transient disruption of NMDA signaling during neonatal development exerts lasting changes in the cellular and synaptic physiology of neocortical FSIs. Overall, we propose these physiological disturbances represent a general impairment to the physiological maturation of FSIs which may contribute to schizophrenia-like behaviors produced by this model.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Maleato de Dizocilpina/efectos adversos , Antagonistas de Aminoácidos Excitadores/efectos adversos , Interneuronas/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Esquizofrenia/genética , Animales , Animales Recién Nacidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Genes Reporteros , Ácido Glutámico/metabolismo , Inyecciones Subcutáneas , Interneuronas/efectos de los fármacos , Interneuronas/patología , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.1/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Neocórtex/efectos de los fármacos , Neocórtex/metabolismo , Neocórtex/patología , Parvalbúminas/genética , Parvalbúminas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/inducido químicamente , Esquizofrenia/metabolismo , Esquizofrenia/patología , Transducción de Señal , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología
13.
Proc Natl Acad Sci U S A ; 111(38): 13978-83, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25201975

RESUMEN

Abnormal cortical circuits underlie some cognitive and psychiatric disorders, yet the molecular signals that generate normal cortical networks remain poorly understood. Semaphorin 7A (Sema7A) is an atypical member of the semaphorin family that is GPI-linked, expressed principally postnatally, and enriched in sensory cortex. Significantly, SEMA7A is deleted in individuals with 15q24 microdeletion syndrome, characterized by developmental delay, autism, and sensory perceptual deficits. We studied the role that Sema7A plays in establishing functional cortical circuitry in mouse somatosensory barrel cortex. We found that Sema7A is expressed in spiny stellate cells and GABAergic interneurons and that its absence disrupts barrel cytoarchitecture, reduces asymmetrical orientation of spiny stellate cell dendrites, and functionally impairs thalamocortically evoked synaptic responses, with reduced feed-forward GABAergic inhibition. These data identify Sema7A as a regulator of thalamocortical and local circuit development in layer 4 and provide a molecular handle that can be used to explore the coordinated generation of excitatory and inhibitory cortical circuits.


Asunto(s)
Antígenos CD/metabolismo , Potenciales Evocados/fisiología , Red Nerviosa/metabolismo , Semaforinas/metabolismo , Corteza Somatosensorial/metabolismo , Transmisión Sináptica/fisiología , Animales , Antígenos CD/genética , Dendritas/metabolismo , Ratones , Ratones Noqueados , Red Nerviosa/citología , Ratas , Ratas Sprague-Dawley , Semaforinas/genética , Corteza Somatosensorial/citología
14.
Front Cell Neurosci ; 8: 245, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25202236

RESUMEN

Many neurological disorders, including neurodevelopmental disorders, report hypersynchrony of neuronal networks. These alterations in neuronal synchronization suggest a link to the function of inhibitory interneurons. In Fragile X Syndrome (FXS), it has been reported that altered synchronization may underlie hyperexcitability, cognitive dysfunction and provide a link to the increased incidence of epileptic seizures. Therefore, understanding the roles of inhibitory interneurons and how they control neuronal networks is of great importance in studying neurodevelopmental disorders such as FXS. Here, we present a review of how interneuron populations and inhibition are important contributors to the loss of excitatory/inhibitory balance seen in hypersynchronous and hyperexcitable networks from neurodevelopmental disorders, and specifically in FXS.

15.
J Neurophysiol ; 112(4): 890-902, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24848467

RESUMEN

Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability. Comorbidities of FXS such as autism are increasingly linked to imbalances in excitation and inhibition (E/I) as well as dysfunction in GABAergic transmission in a number of brain regions including the amygdala. However, the link between E/I imbalance and GABAergic transmission deficits in the FXS amygdala is poorly understood. Here we reveal that normal tonic GABAA receptor-mediated neurotransmission in principal neurons (PNs) of the basolateral amygdala (BLA) is comprised of both δ- and α5-subunit-containing GABAA receptors. Furthermore, tonic GABAergic capacity is reduced in these neurons in the Fmr1 knockout (KO) mouse model of FXS (1.5-fold total, 3-fold δ-subunit, and 2-fold α5-subunit mediated) as indicated by application of gabazine (50 µM), 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP, 1 µM), and α5ia (1.5 µM) in whole cell patch-clamp recordings. Moreover, α5-containing tonic GABAA receptors appear to preferentially modulate nonsomatic compartments of BLA PNs. Examination of evoked feedforward synaptic transmission in these cells surprisingly revealed no differences in overall synaptic conductance or E/I balance between wild-type (WT) and Fmr1 KO mice. Instead, we observed altered feedforward kinetics in Fmr1 KO PNs that supports a subtle yet significant decrease in E/I balance at the peak of excitatory conductance. Blockade of α5-subunit-containing GABAA receptors replicated this condition in WT PNs. Therefore, our data suggest that tonic GABAA receptor-mediated neurotransmission can modulate synaptic E/I balance and timing established by feedforward inhibition and thus may represent a therapeutic target to enhance amygdala function in FXS.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Potenciales Postsinápticos Excitadores , Síndrome del Cromosoma X Frágil/metabolismo , Potenciales Postsinápticos Inhibidores , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/fisiología , Animales , Retroalimentación Fisiológica , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Isoxazoles/farmacología , Ratones , Ftalazinas/farmacología , Subunidades de Proteína/metabolismo , Piridazinas/farmacología , Sinapsis/fisiología , Triazoles/farmacología
16.
J Neurosci ; 33(17): 7548-58, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23616559

RESUMEN

Fragile X syndrome (FXS) is a debilitating neurodevelopmental disorder thought to arise from disrupted synaptic communication in several key brain regions, including the amygdala, a central processing center for information with emotional and social relevance. Recent studies reveal defects in both excitatory and inhibitory neurotransmission in mature amygdala circuits in Fmr1(-/y) mutants, the animal model of FXS. However, whether these defects are the result of altered synaptic development or simply faulty mature circuits remains unknown. Using a combination of electrophysiological and genetic approaches, we show the development of both presynaptic and postsynaptic components of inhibitory neurotransmission in the FXS amygdala is dynamically altered during critical stages of neural circuit formation. Surprisingly, we observe that there is a homeostatic correction of defective inhibition, which, despite transiently restoring inhibitory synaptic efficacy to levels at or beyond those of control, ultimately fails to be maintained. Using inhibitory interneuron-specific conditional knock-out and rescue mice, we further reveal that fragile X mental retardation protein function in amygdala inhibitory microcircuits can be segregated into distinct presynaptic and postsynaptic components. Collectively, these studies reveal a previously unrecognized complexity of disrupted neuronal development in FXS and therefore have direct implications for establishing novel temporal and region-specific targeted therapies to ameliorate core amygdala-based behavioral symptoms.


Asunto(s)
Amígdala del Cerebelo/patología , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Homeostasis/genética , Red Nerviosa/fisiología , Inhibición Neural/genética , Animales , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Potenciales Postsinápticos Inhibidores/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos
17.
Neural Plast ; 2012: 275630, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22811939

RESUMEN

Deficits in neuronal plasticity are common hallmarks of many neurodevelopmental disorders. In the case of fragile-X syndrome (FXS), disruption in the function of a single gene, FMR1, results in a variety of neurological consequences directly related to problems with the development, maintenance, and capacity of plastic neuronal networks. In this paper, we discuss current research illustrating the mechanisms underlying plasticity deficits in FXS. These processes include synaptic, cell intrinsic, and homeostatic mechanisms both dependent on and independent of abnormal metabotropic glutamate receptor transmission. We place particular emphasis on how identified deficits may play a role in developmental critical periods to produce neuronal networks with permanently decreased capacity to dynamically respond to changes in activity central to learning, memory, and cognition in patients with FXS. Characterizing early developmental deficits in plasticity is fundamental to develop therapies that not only treat symptoms but also minimize the developmental pathology of the disease.


Asunto(s)
Síndrome del Cromosoma X Frágil/patología , Plasticidad Neuronal/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Homeostasis/fisiología , Humanos , Red Nerviosa/patología , Receptores de Cannabinoides/genética , Receptores de Cannabinoides/fisiología , Receptores de Glutamato/fisiología
18.
Dev Neurosci ; 33(5): 349-64, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21934270

RESUMEN

Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by intellectual disability, sensory hypersensitivity, and high incidences of autism spectrum disorders and epilepsy. These phenotypes are suggestive of defects in neural circuit development and imbalances in excitatory glutamatergic and inhibitory GABAergic neurotransmission. While alterations in excitatory synapse function and plasticity are well-established in Fmr1 knockout (KO) mouse models of FXS, a number of recent electrophysiological and molecular studies now identify prominent defects in inhibitory GABAergic transmission in behaviorally relevant forebrain regions such as the amygdala, cortex, and hippocampus. In this review, we summarize evidence for GABAergic system dysfunction in FXS patients and Fmr1 KO mouse models alike. We then discuss some of the known developmental roles of GABAergic signaling, as well as the development and refinement of GABAergic synapses as a framework for understanding potential causes of mature circuit dysfunction. Finally, we highlight the GABAergic system as a relevant target for the treatment of FXS.


Asunto(s)
Síndrome del Cromosoma X Frágil/fisiopatología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Amígdala del Cerebelo/fisiopatología , Amígdala del Cerebelo/ultraestructura , Animales , Corteza Cerebral/fisiopatología , Corteza Cerebral/ultraestructura , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/terapia , Hipocampo/fisiopatología , Hipocampo/ultraestructura , Humanos , Plasticidad Neuronal/fisiología
19.
J Neurophysiol ; 106(5): 2264-72, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21795626

RESUMEN

Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by severe cognitive impairments, sensory hypersensitivity, and comorbidities with autism and epilepsy. Fmr1 knockout (KO) mouse models of FXS exhibit alterations in excitatory and inhibitory neurotransmission, but it is largely unknown how aberrant function of specific neuronal subtypes contributes to these deficits. In this study we show specific inhibitory circuit dysfunction in layer II/III of somatosensory cortex of Fmr1 KO mice. We demonstrate reduced activation of somatostatin-expressing low-threshold-spiking (LTS) interneurons in response to the group I metabotropic glutamate receptor (mGluR) agonist 3,5-dihydroxyphenylglycine (DHPG) in Fmr1 KO mice, resulting in impaired synaptic inhibition. Paired recordings from pyramidal neurons revealed reductions in synchronized synaptic inhibition and coordinated spike synchrony in response to DHPG, indicating a weakened LTS interneuron network in Fmr1 KO mice. Together, these findings reveal a functional defect in a single subtype of cortical interneuron in Fmr1 KO mice. This defect is linked to altered activity of the cortical network in line with the FXS phenotype.


Asunto(s)
Sincronización Cortical/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Inhibición Neural/fisiología , Corteza Somatosensorial/fisiopatología , Potenciales de Acción/fisiología , Animales , Síndrome del Cromosoma X Frágil/genética , Interneuronas/fisiología , Masculino , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Ratones , Ratones Endogámicos , Ratones Noqueados , Técnicas de Cultivo de Órganos , Fenotipo , Células Piramidales/fisiología , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Corteza Somatosensorial/citología , Somatostatina/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/fisiología
20.
J Neurosci ; 30(29): 9929-38, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20660275

RESUMEN

Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by variable cognitive impairment and behavioral disturbances such as exaggerated fear, anxiety and gaze avoidance. Consistent with this, findings from human brain imaging studies suggest dysfunction of the amygdala. Underlying alterations in amygdala synaptic function in the Fmr1 knock-out (KO) mouse model of FXS, however, remain largely unexplored. Utilizing a combination of approaches, we uncover profound alterations in inhibitory neurotransmission in the amygdala of Fmr1 KO mice. We demonstrate a dramatic reduction in the frequency and amplitude of phasic IPSCs, tonic inhibitory currents, as well as in the number of inhibitory synapses in Fmr1 KO mice. Furthermore, we observe significant alterations in GABA availability, both intracellularly and at the synaptic cleft. Together, these findings identify abnormalities in basal and action potential-dependent inhibitory neurotransmission. Additionally, we reveal a significant neuronal hyperexcitability in principal neurons of the amygdala in Fmr1 KO mice, which is strikingly rescued by pharmacological augmentation of tonic inhibitory tone using the GABA agonist gaboxadol (THIP). Thus, our study reveals relevant inhibitory synaptic abnormalities in the amygdala in the Fmr1 KO brain and supports the notion that pharmacological approaches targeting the GABAergic system may be a viable therapeutic approach toward correcting amygdala-based symptoms in FXS.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/fisiopatología , Agonistas del GABA/farmacología , Isoxazoles/farmacología , Transmisión Sináptica/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Modelos Animales de Enfermedad , Potenciales Evocados , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Glutamato Descarboxilasa/metabolismo , Técnicas In Vitro , Interneuronas/metabolismo , Masculino , Ratones , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA