Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
ACS Nano ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808728

RESUMEN

This paper reports how CdSe core-only nanoplatelets (NPLs) coupled with plasmonic Al nanoparticle lattices can exhibit exciton-polariton lasing. By improving a procedure to synthesize monodisperse 4-monolayer CdSe NPLs, we could resolve polariton decay dynamics and pathways. Experiment and theory confirmed that the system is in the strong coupling regime based on anticrossings in the dispersion diagrams and magnitude of the Rabi-splitting values. Notably, polariton lasing is observed only for cavity lattice periodicities that exhibit specific dispersive characteristics that enable polariton accumulation. The threshold of polariton lasing is 25-fold lower than the reported photon lasing values from CdSe NPLs in similar cavity designs. This open-cavity platform offers a simple approach to control exciton polaritons anticipated to benefit quantum information processing, optoelectronics, and chemical reactions.

2.
J Am Chem Soc ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814893

RESUMEN

Coupling molecules to a quantized radiation field inside an optical cavity has shown great promise to modify chemical reactivity. In this work, we show that the ground-state selectivity of the electrophilic bromination of nitrobenzene can be fundamentally changed by strongly coupling the reaction to the cavity, generating ortho- or para-substituted products instead of the meta product. Importantly, these are products that are not obtained from the same reaction outside the cavity. A recently developed ab initio approach was used to theoretically compute the relative energies of the cationic Wheland intermediates, which indicate the kinetically preferred bromination site for all products. Performing an analysis of the ground-state electron density for the Wheland intermediates inside and outside the cavity, we demonstrate how strong coupling induces reorganization of the molecular charge distribution, which in turn leads to different bromination sites directly dependent on the cavity conditions. Overall, the results presented here can be used to understand cavity induced changes to ground-state chemical reactivity from a mechanistic perspective as well as to directly connect frontier theoretical simulations to state-of-the-art, but realistic, experimental cavity conditions.

3.
Polymers (Basel) ; 16(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38475305

RESUMEN

Thermosets have been crucial in modern engineering for decades, finding applications in various industries. Welding cross-linked components are essential in the processing of thermosets for repairing damaged areas or fabricating complex structures. However, the inherent insolubility and infusibility of thermoset materials, attributed to their three-dimensional network structure, pose challenges to welding development. Incorporating dynamic chemical bonds into highly cross-linked networks bridges the gap between thermosets and thermoplastics presenting a promising avenue for innovative welding techniques. External stimuli, including thermal, light, solvent, pH, electric, and magnetic fields, induce dynamic bonds' breakage and reformation, rendering the cross-linked network malleable. This plasticity facilitates the seamless linkage of two parts to an integral whole, attracting significant attention for potential applications in soft actuators, smart devices, solid batteries, and more. This review provides a comprehensive overview of dynamic bonds employed in welding dynamic cross-linked networks (DCNs). It extensively discusses the classification and fabrication of common epoxy DCNs and acrylate DCNs. Notably, recent advancements in welding processes based on DCNs under external stimuli are detailed, focusing on the welding dynamics among covalent adaptable networks (CANs).

4.
Int J Biol Macromol ; 257(Pt 1): 128604, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056729

RESUMEN

Nowadays, various high-performance electromagnetic interference (EMI) shielding materials have enormous application potential in electronic field. However, traditional EMI shielding materials often have high conductivity, resulting in the serious mismatch between the impedance of the material surface and the free space, which will cause a large amount of reflection of electromagnetic (EM) waves, leading to secondary reflection pollution. In this paper, we report a novel flexible EMI shielding composite film with extremely low reflection loss and efficient EM wave absorption, which was prepared by assisted self-assembly based on simple vacuum filtration using carboxymethyl cellulose as the matrix and MWCNT@Fe3O4 synthesized by chemical coprecipitation as the composite functional filler. By adjusting the Fe3O4 coating degree of MWCNTs in the filler, the composite film achieved the construction of a conductive network with high Fe3O4 content. Benefit by the good adaptability of conductivity and magnetic permeability, the composite film has good impedance matching ability and microwave absorption performance. The reflection loss of the composite film with the thickness of 28 µm in the X-band was only 0.23 dB, accounting for 1.7 % of the total loss. This work provides new insights for the development of EMI materials and effective mitigation secondary EM wave reflection pollution.


Asunto(s)
Absorción de Radiación , Carboximetilcelulosa de Sodio , Conductividad Eléctrica , Impedancia Eléctrica , Electrónica , Excipientes
5.
Int J Biol Macromol ; 255: 128122, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984570

RESUMEN

Smart hydrogels have shown great potential applications in disease treatment due to their controlled and local drug-release ability. Herein, a smart hydrogel with pH-responsive, injectable, and self-healing properties for controlled release of taxifolin (TFL) was prepared by freezing-thawing and photo-crosslinking methods. The crosslinking network of hydrogels (CS-CA hydrogels) was constructed by the hydrogen bonds, Schiff base bonds, and cyclobutane rings using chitosan (CS) and coumarin (CA) as raw materials. The CS-CA hydrogel demonstrated a compressive strength of 1.04 MPa, a self-healing efficiency of 99.9 %, and could maintain structural and functional integrity after injection. In addition, the drug release rate and shape of the CS-CA hydrogels were tunable due to its pH sensitivity. The TFL cumulative release reached 60 % within 12 h at pH = 4, and after equilibration, the cumulative release of TFL at pH = 4 (80 %) was significantly higher than at pH = 9.2 (50 %). The CCK8 experiment showed that the resulting hydrogel had no cytotoxicity. Meanwhile, subcutaneous implantation experiments in mice showed that the CS-CA hydrogels had favorable biodegradability and compatibility.


Asunto(s)
Quitosano , Ratones , Animales , Quitosano/química , Hidrogeles/química , Enlace de Hidrógeno , Bases de Schiff , Concentración de Iones de Hidrógeno , Cumarinas
6.
J Phys Chem Lett ; 14(49): 11208-11216, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38055902

RESUMEN

We applied a variety of mixed quantum-classical (MQC) approaches to simulate the VSC-influenced reaction rate constant. All of these MQC simulations treat the key vibrational levels associated with the reaction coordinate in the quantum subsystem (as quantum states), whereas all other degrees of freedom (DOFs) are treated inside the classical subsystem. We find that, as long as we have the quantum state descriptions for the vibrational DOFs, one can correctly describe the VSC resonance condition when the cavity frequency matches the bond vibrational frequency. This correct resonance behavior can be obtained regardless of the detailed MQC methods that one uses. The results suggest that the MQC approaches can generate semiquantitative agreement with the exact results for rate constant changes when changing the cavity frequency, the light-matter coupling strength, or the cavity lifetime. The finding of this work suggests that one can use computationally economic MQC approaches to explore the collective coupling scenario when many molecules are collectively coupled to many cavity modes in the future.

7.
ACS Appl Mater Interfaces ; 15(43): 50391-50399, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37870942

RESUMEN

Nanochannel ionic diodes require extremely complex and expensive fabrication processes. Polyelectrolyte ionic diodes attracted widespread attention among ionic rectification systems due to their simplicity of development and the ability to break the size limits of the nanochannel. However, enhancement of their rectification ratio is still in the exploratory stage. In this study, chitosan (CS) hydrogels and sodium polyacrylate (PAAs) hydrogels were prepared as the substrates for the heterostructured ionic diodes. 5,10,15,20-Tetrakis(4-aminophenyl)-21H,23H-porphyrin (TAPP) was selected to regulate the rectification ratio of ionic diodes. By adding 0.05 wt % TAPP to the CS hydrogel, the rectification ratio of the ionic diode can be increased to 10, which is 4 times larger than that of the undoped ionic diode. In contrast, the rectification ratio of the ionic diodes with TAPP added in the PAAs hydrogel decreases to 2. In addition, the ionic diode composed of the TAPP-doped CS hydrogel and PAAs hydrogel has the characteristics of a high open-circuit voltage. The open-circuit voltage of the 10 mm × 10 mm × 4 mm heterojunction hydrogel reached 370 mV. The ionic diodes can be used as a self-powered power supply device.

8.
J Colloid Interface Sci ; 652(Pt B): 1271-1281, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659300

RESUMEN

Solar interfacial evaporation is a highly promising technology for seawater desalination and wastewater treatment, while the simple preparation processes and efficient production of clean water based on biomass interfacial evaporators still need further exploration and development. Here, we reported a wood-based evaporator (PFDW) loaded with Fe3O4 and polydopamine (PDA) after simple immersion treatment at room temperature for efficient and continuous water purification. The synergistic photothermal effect of PDA coating and Fe3O4 particles enables the evaporator to achieve high photothermal conversion efficiency in the longer wavelength range, while combined with the rapid water transport capacity endowed by the vertically aligned microporous structure of natural wood, it achieved an evaporation rate of 1.70 kg m-2h-1 and an energy efficiency of 98.0% under 1 kW m-2 irradiation. In addition, the prepared PFDW exhibited sustainable desalination stability and excellent removal efficiency for different water sources including organic dye wastewater, heavy metal effluent, oil-water emulsion and river water. This work provides a new avenue for efficient salt-tolerant portable evaporators.

9.
J Chem Phys ; 159(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37655761

RESUMEN

We develop an accurate and numerically efficient non-adiabatic path-integral approach to simulate the non-linear spectroscopy of exciton-polariton systems. This approach is based on the partial linearized density matrix approach to model the exciton dynamics with explicit propagation of the phonon bath environment, combined with a stochastic Lindblad dynamics approach to model the cavity loss dynamics. Through simulating both linear and polariton two-dimensional electronic spectra, we systematically investigate how light-matter coupling strength and cavity loss rate influence the optical response signal. Our results confirm the polaron decoupling effect, which is the reduced exciton-phonon coupling among polariton states due to the strong light-matter interactions. We further demonstrate that the polariton coherence time can be significantly prolonged compared to the electronic coherence outside the cavity.

10.
J Chem Phys ; 159(8)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37606332

RESUMEN

We present numerically exact quantum dynamics simulations using the hierarchical equation of motion approach to investigate the resonance enhancement of chemical reactions due to the vibrational strong coupling (VSC) in polariton chemistry. The results reveal that the cavity mode acts like a "rate-promoting vibrational mode" that enhances the ground state chemical reaction rate constant when the cavity mode frequency matches the vibrational transition frequency. The exact simulation predicts that the VSC-modified rate constant will change quadratically as the light-matter coupling strength increases. When changing the cavity lifetime from the lossy limit to the lossless limit, the numerically exact results predict that there will be a turnover of the rate constant. Based on the numerical observations, we present an analytic rate theory to explain the observed sharp resonance peak of the rate profile when tuning the cavity frequency to match the quantum transition frequency of the vibrational ground state to excited states. This rate theory further explains the origin of the broadening of the rate profile. The analytic rate theory agrees with the numerical results under the golden rule limit and the short cavity lifetime limit. To the best of our knowledge, this is the first analytic theory that is able to explain the sharp resonance behavior of the VSC-modified rate profile when coupling an adiabatic ground state chemical reaction to the cavity. We envision that both the numerical analysis and the analytic theory will offer invaluable theoretical insights into the fundamental mechanism of the VSC-induced rate constant modifications in polariton chemistry.

11.
Chem Rev ; 123(16): 9786-9879, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37552606

RESUMEN

When molecules are coupled to an optical cavity, new light-matter hybrid states, so-called polaritons, are formed due to quantum light-matter interactions. With the experimental demonstrations of modifying chemical reactivities by forming polaritons under strong light-matter interactions, theorists have been encouraged to develop new methods to simulate these systems and discover new strategies to tune and control reactions. This review summarizes some of these exciting theoretical advances in polariton chemistry, in methods ranging from the fundamental framework to computational techniques and applications spanning from photochemistry to vibrational strong coupling. Even though the theory of quantum light-matter interactions goes back to the midtwentieth century, the gaps in the knowledge of molecular quantum electrodynamics (QED) have only recently been filled. We review recent advances made in resolving gauge ambiguities, the correct form of different QED Hamiltonians under different gauges, and their connections to various quantum optics models. Then, we review recently developed ab initio QED approaches which can accurately describe polariton states in a realistic molecule-cavity hybrid system. We then discuss applications using these method advancements. We review advancements in polariton photochemistry where the cavity is made resonant to electronic transitions to control molecular nonadiabatic excited state dynamics and enable new photochemical reactivities. When the cavity resonance is tuned to the molecular vibrations instead, ground-state chemical reaction modifications have been demonstrated experimentally, though its mechanistic principle remains unclear. We present some recent theoretical progress in resolving this mystery. Finally, we review the recent advances in understanding the collective coupling regime between light and matter, where many molecules can collectively couple to a single cavity mode or many cavity modes. We also lay out the current challenges in theory to explain the observed experimental results. We hope that this review will serve as a useful document for anyone who wants to become familiar with the context of polariton chemistry and molecular cavity QED and thus significantly benefit the entire community.

12.
J Phys Chem A ; 127(32): 6830-6841, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37499090

RESUMEN

We provide a simple and intuitive theory to explain how coupling a molecule to an optical cavity can modify ground-state chemical reactivity by exploiting intrinsic quantum behaviors of light-matter interactions. Using the recently developed polarized Fock states representation, we demonstrate that the change of the ground-state potential is achieved due to the scaling of diabatic electronic couplings with the overlap of the polarized Fock states. Our theory predicts that for a proton-transfer model system, the ground-state barrier height can be modified through light-matter interactions when the cavity frequency is in the electronic excitation range. Our simple theory explains several recent computational investigations that discovered the same effect. We further demonstrate that under the deep strong coupling limit of the light and matter, the polaritonic ground and first excited eigenstates become the Mulliken-Hush diabatic states, which are the eigenstates of the dipole operator. This work provides a simple but powerful theoretical framework to understand how strong coupling between the molecule and the cavity can modify ground-state reactivities.

14.
Sci Total Environ ; 895: 165051, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37391158

RESUMEN

The discovery of complete ammonium oxidation (comammox) has redefined the perception of the nitrification process which plays a vital part in biological nitrogen removal (BNR) from wastewater. Despite the reported detection or cultivation of comammox bacteria in biofilm or granular sludge reactors, limited attempts have been made to enrich or assess comammox bacteria in floccular sludge reactors with suspended growth of microbes, which are most extensively applied at wastewater treatment plants. Therefore, through making use of a comammox-inclusive bioprocess model reliably evaluated using batch experimental data with joint contributions of different nitrifying guilds, this work probed into the proliferation and functioning of comammox bacteria in two commonly-used floccular sludge reactor configurations, i.e., continuous stirred tank reactor (CSTR) and sequencing batch reactor (SBR), under mainstream conditions. The results indicated that compared with the studied SBR, the CSTR was observed to favor the enrichment of comammox bacteria through maintaining a sufficient sludge retention time (40-100 d) while avoiding an extremely low DO level (e.g., 0.05 g-O2/m3), irrespective of the varied influent NH4+-N of 10-100 g-N/m3. Meanwhile, the inoculum sludge was found to greatly influence the start-up process of the studied CSTR. By inoculating the CSTR with a sufficient amount of sludge, finally enriched floccular sludge with a high abundance of comammox bacteria (up to 70.5 %) could be rapidly obtained. These results not only benefitted further investigation and application of comammox-inclusive sustainable BNR technologies but also explained, to some extent, the discrepancy in the reported presence and abundance of comammox bacteria at wastewater treatment plants adopting floccular sludge-based BNR technologies.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Reactores Biológicos/microbiología , Aguas Residuales , Nitrificación , Bacterias , Nitrógeno , Oxidación-Reducción , Amoníaco
15.
J Phys Chem Lett ; 14(25): 5901-5913, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37343178

RESUMEN

Coupling molecules to the quantized radiation field inside an optical cavity creates a set of new photon-matter hybrid states called polariton states. We combine electronic structure theory with quantum electrodynamics (QED) to investigate molecular polaritons using ab initio simulations. This framework joins unperturbed electronic adiabatic states with the Fock state basis to compute the eigenstates of the QED Hamiltonian. The key feature of this "parametrized QED" approach is that it provides the exact molecule-cavity interactions, limited by only approximations made in the electronic structure. Using time-dependent density functional theory, we demonstrated comparable accuracy with QED coupled cluster benchmark results for predicting potential energy surfaces in the ground and excited states and showed selected applications to light-harvesting and light-emitting materials. We anticipate that this framework will provide a set of general and powerful tools that enable direct ab initio simulation of exciton polaritons in molecule-cavity hybrid systems.

16.
J Chem Theory Comput ; 19(8): 2353-2368, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37000936

RESUMEN

We present a mixed quantum-classical simulation of polariton dynamics for molecule-cavity hybrid systems. In particular, we treat the coupled electronic-photonic degrees of freedom (DOFs) as the quantum subsystem and the nuclear DOFs as the classical subsystem and use the trajectory surface hopping approach to simulate non-adiabatic dynamics among the polariton states due to the coupled motion of nuclei. We use the accurate nuclear gradient expression derived from the Pauli-Fierz quantum electrodynamics Hamiltonian without making further approximations. The energies, gradients, and derivative couplings of the molecular systems are obtained from the on-the-fly simulations at the level of complete active space self-consistent field (CASSCF), which are used to compute the polariton energies and nuclear gradients. The derivatives of dipoles are also necessary ingredients in the polariton nuclear gradient expression but are often not readily available in electronic structure methods. To address this challenge, we use a machine learning model with the Kernel ridge regression method to construct the dipoles and further obtain their derivatives, at the same level as the CASSCF theory. The cavity loss process is modeled with the Lindblad jump superoperator on the reduced density of the electronic-photonic quantum subsystem. We investigate the azomethane molecule and its photoinduced isomerization dynamics inside the cavity. Our results show the accuracy of the machine-learned dipoles and their usage in simulating polariton dynamics. Our polariton dynamics results also demonstrate the isomerization reaction of azomethane can be effectively tuned by coupling to an optical cavity and by changing the light-matter coupling strength and the cavity loss rate.

17.
J Chem Phys ; 158(4): 044123, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36725494

RESUMEN

We derive the non-adiabatic ring polymer molecular dynamics (RPMD) approach in the phase space of the SU(N) Lie Group. This method, which we refer to as the spin mapping non-adiabatic RPMD (SM-NRPMD), is based on the spin-mapping formalism for the electronic degrees of freedom (DOFs) and ring polymer path-integral description for the nuclear DOFs. Using the Stratonovich-Weyl transform for the electronic DOFs and the Wigner transform for the nuclear DOFs, we derived an exact expression of the Kubo-transformed time-correlation function (TCF). We further derive the spin mapping non-adiabatic Matsubara dynamics using the Matsubara approximation that removes the high frequency nuclear normal modes in the TCF and derive the SM-NRPMD approach from the non-adiabatic Matsubara dynamics by discarding the imaginary part of the Liouvillian. The SM-NRPMD method has numerical advantages compared to the original NRPMD method based on the Meyer-Miller-Stock-Thoss (MMST) mapping formalism due to a more natural mapping using the SU(N) Lie Group that preserves the symmetry of the original system. We numerically compute the Kubo-transformed position auto-correlation function and electronic population correlation function for three-state model systems. The numerical results demonstrate the accuracy of the SM-NRPMD method, which outperforms the original MMST-based NRPMD. We envision that the SM-NRPMD method will be a powerful approach to simulate electronic non-adiabatic dynamics and nuclear quantum effects accurately.

18.
ACS Appl Mater Interfaces ; 15(2): 2951-2960, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36597008

RESUMEN

Hydrogels with good flexibility and strong hydrophilicity can be candidates for excellent flexible electrolyte materials. However, the poor structural stability, uncontrollable swelling, and lower potential window of hydrogel electrolytes need to be improved. This work combined quaternized gelatin with cross-linked poly(acrylic acid-co-acrylamide) to form a semi-interpenetrating network and gelatinized in situ in a flexible porous wood skeleton. The flexible wood (FW) skeleton enhances the hydrogel and limits the swelling of the hydrogel. In addition, quaternary ammonium groups and FW act synergistically to provide the composite hydrogel electrolyte with a high ionic conductivity of 5.57 × 10-2 S cm-1. The composite hydrogel electrolyte can enable the flexible supercapacitor to operate safely in a potential window of 0-2 V. The optimized supercapacitor has a high specific capacitance of 286.74 F g-1 and provides an outstanding energy density of 39.09 W h kg-1. The flexible supercapacitor shows a capacitance retention of up to 94.6% after 10,000 charge-discharge cycles, indicating dramatic cycling stability. Simultaneously, a capacitance retention of nearly 90% can be maintained by the flexible supercapacitor after 180° bends for 1000 times. A viable idea for developing high-performance hydrogel electrolytes and flexible supercapacitors is provided in this research.

19.
Sci Total Environ ; 859(Pt 1): 160285, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36403844

RESUMEN

Efficient recovery of nitrous oxide (N2O) through heterotrophic denitrification with the help of Fe(II)EDTA-NO as a chelating agent has been regarded as an ideal technology to treat nitric oxide (NO)-rich flue gas. In this study, an integrated NO-based biological denitrification model was developed to describe the sequential reduction of the NO fixed in Fe(II)EDTA-NO with organic carbon as the electron donor. With the inclusion of only the key pathways contributing to nitrogen transformation, the model was firstly developed and then calibrated/validated and evaluated using the data of batch tests mediated by the identified functional heterotrophic bacteria at various substrates concentrations and then used to explore the possibility of enhancing N2O recovery by altering the substrates condition and reactor setup. The results demonstrated that the optimal COD/N ratio decreased consistently from 1.5 g-COD/g-N at the initial NO concentration of 40 g-N/m3 to 1.0 g-COD/g-N at the initial NO concentration of 420 g-N/m3. Furthermore, sufficiently increasing the headspace volume of the reactor was considered an ideal strategy to obtain ideal N2O production of 86.6 % under the studied conditions. The production of high-purity N2O (98 %) confirmed the practical application potential of this integrated treatment technology to recover a valuable energy resource from NO-rich flue gas.


Asunto(s)
Desnitrificación , Óxido Nítrico , Ácido Edético , Óxido Nitroso/metabolismo , Procesos Heterotróficos , Reactores Biológicos/microbiología
20.
Int J Biol Macromol ; 227: 203-213, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549607

RESUMEN

Inspired by the self-recoverability ability of organisms, various self-healing materials have been developed. However, most reinforced fillers are faced with the problem that mechanical strength and self-healing efficiency of materials cannot be improved simultaneously. Here we first prepared new polysiloxane-polyurea (PDMS-PU) and used it as matrix resin to prepare cellulose nanofiber (CNF)/PDMS-PU composite materials with high mechanical properties. CNFs increased the tensile strength of PDMS-PU by 38.87 % and CNF/PDMS-PU composite materials maintained the great bending resistance, transparency and reprocessing properties of PDMS-PU. Moreover, the introduction of CNFs did not reduce the self-healing efficiency of PDMS-PU, and PDMS-PU containing disulfide bonds with CNF content of 1 % (CNF/PDMS-IPDI-S-1 %) with healing efficiency of 95.58 %, and the tensile strength after three recycling processing was still as high as 92.55 % of the original. CNFs reinforced PDMS-PU composite materials are expected to replace PDMS materials in advanced engineering fields that require high strength durability and good formability.


Asunto(s)
Celulosa , Nanofibras , Celulosa/química , Siloxanos , Nanofibras/química , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA