RESUMEN
By utilizing the hydrothermal in situ acylation of organic acids with N2H4, three acylhydrazidate-coordinated compounds [Mn(L1)2(H2O)2] (L1=2,3-quinolinedicarboxylhydrazidate; HL1=2,3-dihydropyridazino[4,5-b] quinoline-1,4-dione) 1, [Mn2(ox)(L2)2(H2O)6]·2H2O (L2=benzimidazolate-5,6-dicarboxylhydrazide; HL2=6,7-dihydro-1H-imidazo[4,5-g]phthalazine-5,8-dione; ox=oxalate) 2, and [Cd(HL3)(bpy)] (L3=4,5-di(3'-carboxylphenyl)phthalhydrazidate; H3L3=6,7-dihydro-1H-imidazo[4,5-g]phthalazine-5,8-dione; bpy=2,2'-bipyridine) 3, as well as two acylhydrazide molecules L4 (L4=oxepino[2,3,4-de:7,6,5-d'e']diphthalazine-4,10(5H,9H)-dione) 4 and L5 (L5=4,5-dibromophthalhydrazide; L5=6,7-dibromo-2,3-dihydrophthalazine-1,4-dione) 5 were obtained. X-ray single-crystal diffraction analysis reveals that (i) 1 only possesses a mononuclear structure, but it self-assembles into a 2-D supramolecular network via the NhydrazineHâ¯Nhydrazine and OwHâ¯Ohydroxylimino interactions; (ii) 2 exhibits a dinuclear structure. Ox acts as the linker, while L2 just serves as a terminal ligand; (iii) In 3, L3 acts as a 3-connected node to propagate the 7-coordinated Cd(2+) centers into a 1-D double-chain structure; (iv) 4 is a special acylhydrazide molecule. Two OH groups for the intermediates 3,3'-biphthalhydrazide further lose one water molecule to form 4; (v) 5 is a common monoacylhydrazide molecule. Via the NhydrazineHâ¯Ohydrazine, OhydroxyliminoHâ¯Oacylamino and the πâ¯π interactions, it self-assembles into a 2-D supramolecular network. The photoluminescence analysis reveals that 4 emits light with the maxima at 510nm.
RESUMEN
A new 3-D Zn(2+) coordination polymer (CP) [(CH3)2NH2]3[Zn6(ox)4.5(trz)6]â 4H2O (ox=oxalate; trz=1,2,4-triazolate) 1 was obtained by a simple solvothermal self-assembly. The crystal structural analysis demonstrates that the trz molecules link the Zn(2+) ions into a two-dimensional (2-D) layer network, which is based on the trinuclear Zn3(trz)6 clusters. The ox molecules serve as the linkers to propagate the 2-D layers into a three-dimensional (3-D) network of 1. The thermogravimetry (TG) behavior, photoluminescence property, and the sensing ability of 1 are investigated. The sensing experiment on nitrobenzene (NB) reveals that 1 can serve as a fluorescence probe to detect NB at the ppm concentration.
RESUMEN
Functional molecules synthesized by self-assembly between inorganic salts and amino acids have attracted much attention in recent years. A simple method is reported here for fabricating hybrid organic-inorganic nanoflowers using copper (II) ions as the inorganic component and natural amino acids as the organic component. The results indicate that the interactions between amino acid and copper ions cause the growth of the nanoflowers composed by C, N, Cu, P and O elements. The Cu ions and Cu(AA)n complexes containing Cu-O bond are present in the nanoflowers. The nanoflowers have flower-like porous structure dominated by the R groups of amino acids with high surface-to-volume ratios, which is beneficial for exerting its peroxidase-like activity depending on Fenton-like reaction mechanism with ABTS and Rhodamine B as the substrates. It is expected that the nanoflowers hold great promise as enzyme mimics for application in the field of biosensor, bioanalysis and biocatalysis.
Asunto(s)
Aminoácidos/química , Biocatálisis , Cobre/química , Nanoestructuras/química , Peroxidasas/metabolismo , Técnicas BiosensiblesRESUMEN
Five new organic-inorganic hybrid compounds based on different polyoxoanions [HxGeW12O40](n-) or [H3As2W18O62](3-) (x = 0, 2; n = 4, 2), namely [Cu3(2,2'-bpy)3(inic)(OH)(H2O)][GeW12O40]·1.5H2O (1), [Cu2(phen)2(µ2-Cl)2(inic)]2[H2GeW12O40]·2H2O (2), [Cu2(phen)2(µ2-Cl)Cl(nic)]2[H2GeW12O40] (3), [Cu2(2,2'-bpy)2(hnic)Cl]2[H2GeW12O40] (4), [Cu(phen)(inic)H2O][Cu2(phen)2(inic)2(H2O)][H3As2W18O62]·3H2O (5) (inic = isonicotinic acid, nic = nicotinic acid, hnic = 2-hydroxy-nicotinic acid, 2,2'-bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline), have been synthesized and characterized by IR, UV-Vis, XRD, cyclic voltammetric measurements and single crystal X-ray diffraction analysis. Single crystal X-ray analysis reveals that compound 1 is isomorphous and isostructural with a compound reported by us recently, the main difference between the two is the heteroatom of the polyoxoanions in the two compounds. Compound 2 is a supramolecular structure constructed from polyoxoanions and transition metal mixed-organic-ligand complexes. Compound 3 is a novel polyoxoanion bi-supported transition metal mixed-organic-ligand complex. Compound 4 is a 1-D chain structure constructed from polyoxoanions and transition metal mixed-organic-ligand complexes. The photodegradation properties of compounds 1-5 have been analyzed.
RESUMEN
Six new organic-inorganic hybrid compounds based on [XM12O40](4-) (X = heteroatom, M = metal atom), namely [Cu(pic)2][H2XM12O40]·2Hapy·2apy (X = Si, M = W for , X = Ge, M = W for and X = Si, M = Mo for ), [Cu(2,2'-bpy)2][Cu(2,2'-bpy)(H2O)][Cu(pic)2]0.5[XM12O40]·nH2O (X = Si, M = Mo, n = 0.5 for , X = Ge, M = W, n = 1 for ) and [Cu(phen)(H2O)]2[Cu(pic)2][GeW12O40]·2.5H2O () (pic = deprotonated picolinic acid, apy = 2-aminopyridine, 2,2'-bpy = 2,2'-bipyridine, phen = phenanthroline), have been synthesized and characterized by IR, UV-Vis, XRD, cyclic voltammetric measurements and single crystal X-ray diffraction analysis. Single crystal X-ray analysis reveals that compounds are isomorphous and isostructural, in which each is based on [H2XM12O40](2-) and [Cu(pic)2]. Compounds and are also isomorphous and isostructural, of which the structures are more interesting than those of compounds . Both structures are constructed from [XM12O40](4-) and metal mixed-organic-ligand complexes. Compound is also constructed from Keggin ions and metal mixed-organic-ligand complexes, which are, however, thoroughly different from those of compounds and . The photodegradation properties of compounds have been analyzed. Compounds also exhibit rapid absorption properties for RhB (Rhodamine B). Detailed analysis of the photodegradation properties of compounds reveals that the molybdate POM has stronger degradation ability for RhB than the tungstate one.
Asunto(s)
Compuestos de Tungsteno/química , 2,2'-Dipiridil/química , Aminopiridinas/química , Colorantes/aislamiento & purificación , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Molibdeno/química , Fenantrolinas/química , Fotólisis , Ácidos Picolínicos/química , Rodaminas/aislamiento & purificaciónRESUMEN
The facile synthesis of core-shell magnetic mesoporous silica nanoparticles (Fe3 O4 @mSiO2 NPs) was reported in aqueous phase using cetyltrimethylammonium bromide as a template under alcohol-free conditions. Compared to the conventional synthesis method for core-shell Fe3 O4 @mSiO2 NPs, the approach in this study is rapid (only 5-min reaction time), cheap (without using organic agents), and environmentally friendly (one-step synthesis in alcohol-free medium). Doxorubicin (DOX)-loaded Fe3 O4 @mSiO2 NPs exert extraordinarily high specificity for liver cancer cells, which was due to the pH-sensitive doxorubicin release, as well as higher endocytosis capacity in liver cancer cells rather than normal liver cells. The potential advantages of using such Fe3 O4 @mSiO2 NPs as the vehicle of anticancer drugs were that the Fe3 O4 @mSiO2 NPs exhibit good biocompatibility, high loading and protection of the guest molecules, selective killing effect, and efficient cellular uptake. The exciting pH-dependent release properties of doxorubicin-loaded Fe3 O4 @mSiO2 NPs make their use a promising strategy for enhancing efficient therapy toward tumors, while reducing the cytotoxicity of doxorubicin to human normal neutral tissue or cells.
Asunto(s)
Antineoplásicos/administración & dosificación , Nanopartículas de Magnetita/química , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacocinética , Sistemas de Liberación de Medicamentos , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Nanopartículas de Magnetita/ultraestructura , Microscopía Electrónica de Transmisión , Nanocáscaras/química , Nanocáscaras/ultraestructura , Dióxido de SilicioRESUMEN
Five new organicinorganic hybrid compounds based on the Keggin-type polyoxoanion [SiW12O40]4−, namely [Cu3(2,2'-bpy)3(inic)(µ2-OH)(H2O)][SiW12O40]·2H2O (1), [Cu6(phen)6(µ3-Cl)2(µ2-Cl)2Cl2(inic)2][SiW12O40]·6H2O (2), [Cu2(hnic)(2,2'-bpy)2Cl]2[H2SiW12O40] (3), [Cu2(nic)(phen)2Cl2]2[SiW12O40] (4) and [Cu2(pic)(2,2'-bpy)2Cl]2[SiW12O40] (5) (inic = isonicotinic acid, hnic = 2-hydroxy-nicotinic acid, nic = nicotinic acid, pic = picolinic acid, 2,2'-bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline) have been synthesized and characterized by IR, UV-Vis, XPS, XRD, cyclic voltammetric measurements, photoluminescence analysis and single crystal X-ray diffraction analysis. Crystal analysis reveals that compound 1 exhibits a 2-D double layered framework structure constructed from [SiW12O40]4− and copper-aqua-2,2'-bipy-hydroxyl-isonicotinate complexes. Compound 2 is a 0-D discrete structure formed by [SiW12O40]4− and copper-chloro-isonicotinate-phenanthroline complexes. Compound 3 shows a 1-D single chain structure based on the linkage of copper-2,2-bpy-chloro-2-hydroxy-nicotinate complexes and [SiW12O40]4−. Compounds 4 and 5 both contain polyoxometalate supported transition metal complexes, one is a polyoxometalate supported copper-chloro-nicotinate-phenanthroline complex in 4, and the other is a polyoxometalate supported copper-2,2-bpy-chloro-nicotinate complex in 5. It should be noted that nicotinic, isonicotinic and picolinic acids are structural isomers and 2-hydroxy-nicotinic acid is an in situ hydroxylated product of nicotinic acid. In addition, photocatalytic degradation of Rhodamine B (RhB) by compounds 15 has been investigated in aqueous solutions.
Asunto(s)
Ácidos Carboxílicos/química , Compuestos Organometálicos/química , Piridinas/química , Elementos de Transición/química , Compuestos de Tungsteno/química , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis químicaRESUMEN
Novel multifunctional magnetic-mesoporous Janus particles with controlled aspect ratio were developed by a simple one-step synthesis approach. Due to their superior magnetic properties and well-defined pore structures, these particles will be important in drug delivery, molecule targeting, cellular imaging, and as building blocks for the assembly of complex nanostructures.