Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Carbohydr Polym ; 345: 122558, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227097

RESUMEN

Cellulose nanofibrils are one of the keystone materials for sustainable future, yet their poor water repellency hinders their push into industrial applications. Due to complexity and poor economical outcome and/or processing toxicity of the existing hydrophobization methods, nanocellulose loses against its antagonist plastic in medical and food industries. Herein, we demonstrate for the first time the "one-side selective water-repellency activation" in nanocellulose membranes by the means of mild N2-plasma treatment, exhibiting lowest wettability after 20 s of treatment. Hydrophobicity and accompanying Janus character were justified by the topological, chemical and structural reorganizations in cellulose nanofibrils. The findings suggest that the mechanism behind the hydrophilic/hydrophobic change primarily relies on the interplay between OH removal and appearance of SiCH3, originating from the polysiloxanes-based substrate, as well as complementary CNH2 groups formation. First-principles calculations show that NH2 groups moderately increase hydrophobicity, while various SiCH3 substitutions wholly change the character of the surface to repel water. Using nitrogen is shown to be crucial, as N(H)Si(CH3)3 groups induce greater hydrophobicity than simple OSi(CH3)3. Finally, the obtained materials absorb water on the hydrophilic side, while remaining hydrophobic on the other, exhibit high tensile strength, and protection against UV light, demonstrating applicability over wide range of applications.

2.
ChemSusChem ; : e202400898, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022871

RESUMEN

Although CO2 contributes to global warming, it also offers potential as a raw material for the production of hydrocarbons (CH4, C2H4 and CH3OH). Electrochemical CO2 reduction reaction (eCO2RR) is an emerging technology that utilizes renewable energy to convert CO2 into valuable fuels, solving environmental and energy problems simultaneously. Insights gained at any individual scale can only provide a limited view of that specific scale. Multiscale modeling, which involves coupling atomistic-level insights (DFT) and (MD), with mesoscale (KMC and MK) and macroscale (CFD) simulations, has received significant attention recently. While multiscale modeling of eCO2RR on electrocatalysts across all scales is limited due to its complexity, this review offers an overview of recent works on single scales and the coupling of two and three scales, such as "DFT+MD", "DFT+KMC", "DFT+MK", "KMC/MK+CFD" and "DFT+MK/KMC+CFD", focusing particularly on Cu-based electrocatalysts. This sets it apart from other reviews that solely focus exclusively on a single scale or only on a combination of DFT and MK/KMC scales. Furthermore, this review offers a concise overview of machine learning (ML) applications for eCO2RR, an emerging approach that has not yet been reviewed. Finally, this review highlights the key challenges, research gaps and perspectives of multiscale modeling for eCO2RR.

3.
Small ; 20(24): e2310587, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38546418

RESUMEN

The process of N-doping is frequently employed to enhance the properties of carbon quantum dots. However, the precise requirements for nitrogen precursors in producing high-quality N-doped carbon quantum dots (NCQDs) remain undefined. This research systematically examines the influence of various nitrogen dopants on the morphology, optical features, and band structure of NCQDs. The dots are synthesized using an efficient, eco- friendly, and rapid continuous hydrothermal flow technique. This method offers unparalleled control over synthesis and doping, while also eliminating convention-related issues. Citric acid is used as the carbon source, and urea, trizma base, beta-alanine, L-arginine, and EDTA are used as nitrogen sources. Notably, urea and trizma produced NCQDs with excitation-independent fluorescence, high quantum yields (up to 40%), and uniform dots with narrow particle size distributions. Density functional theory (DFT) and time-dependent DFT modelling established that defects and substituents within the graphitic structure have a more significant impact on the NCQDs' electronic structure than nitrogen-containing functional groups. Importantly, for the first time, this work demonstrates that the conventional approach of modelling single-layer structures is insufficient, but two layers suffice for replicating experimental data. This study, therefore, provides essential guidance on the selection of nitrogen precursors for NCQD customization for diverse applications.

4.
ChemSusChem ; 17(13): e202301730, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38523408

RESUMEN

Artificial ammonia synthesis via the Haber-Bosch process is environmentally problematic due to the high energy consumption and corresponding CO 2 ${_2 }$ emissions, produced during the reaction and before hand in hydrogen production upon methane steam reforming. Photocatalytic nitrogen fixation as a greener alternative to the conventional Haber-Bosch process enables us to perform nitrogen reduction reaction (NRR) under mild conditions, harnessing light as the energy source. Herein, we systematically review first-principles calculations used to determine the electronic/optical properties of photocatalysts, N2 adsorption and to expound possible NRR mechanisms. The most commonly studied photocatalysts for nitrogen fixation are usually modified with dopants, defects, co-catalysts and Z-scheme heterojunctions to prevent charge carrier recombination, improve charge separation efficiency and adjust a band gap to for utilizing a broader light spectrum. Most studies at the atomistic level of modeling are grounded upon density functional theory (DFT) calculations, wholly foregoing excitation effects paramount in photocatalysis. Hence, there is a dire need to consider methods beyond DFT to study the excited state properties more accurately. Furthermore, a few studies have been examined, which include higher level kinetics and macroscale simulations. Ultimately, we show there is still ample room for improvement with regard to first principles calculations and their integration in multiscale models.

5.
Chimia (Aarau) ; 77(12): 816-826, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38131404

RESUMEN

The article discusses the production of platform chemicals from various biological sources, including glycerol, lignin, cellulose, bio-oils, and sea products. It presents the results of catalytic and downstream processes involved in the conversion of these biomass-derived feedstocks. The experimental approaches are complemented by numerical descriptions, ranging from density functional theory (DFT) calculations to kinetic modellingof the experimental data. This multi-scale modelling approach helps to understand the underlying mechanisms and optimize the production of platform chemicals from renewable resources.

6.
ACS Catal ; 13(9): 6242-6248, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37180962

RESUMEN

Stereopure CF3-substituted syn-1,2-diols were prepared via the reductive dynamic kinetic resolution of the corresponding racemic α-hydroxyketones in HCO2H/Et3N. (Het)aryl, benzyl, vinyl, and alkyl ketones are tolerated, delivering products with ≥95% ee and ≥87:13 syn/anti. This methodology offers rapid access to stereopure bioactive molecules. Furthermore, DFT calculations for three types of Noyori-Ikariya ruthenium catalysts were performed to show their general ability of directing stereoselectivity via the hydrogen bond acceptor SO2 region and CH/π interactions.

7.
Angew Chem Int Ed Engl ; 62(31): e202305804, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37226934

RESUMEN

Ethylene epoxidation is industrially and commercially one of the most important selective oxidations. Silver catalysts have been state-of-the-art for decades, their efficiency steadily improving with empirical discoveries of dopants and co-catalysts. Herein, we perform a computational screening of the metals in the periodic table, identify prospective superior catalysts and experimentally demonstrate that Ag/CuPb, Ag/CuCd and Ag/CuTl outperform the pure-Ag catalysts, while they still confer an easily scalable synthesis protocol. Furthermore, we show that to harness the potential of computationally-led discovery of catalysts fully, it is essential to include the relevant in situ conditions e.g., surface oxidation, parasitic side reactions and ethylene epoxide decomposition, as neglecting such effects leads to erroneous predictions. We combine ab initio calculations, scaling relations, and rigorous reactor microkinetic modelling, which goes beyond conventional simplified steady-state or rate-determining modelling on immutable catalyst surfaces. The modelling insights have enabled us to both synthesise novel catalysts and theoretically understand experimental findings, thus, bridging the gap between first-principles simulations and industrial applications. We show that the computational catalyst design can be easily extended to include larger reaction networks and other effects, such as surface oxidations. The feasibility was confirmed by experimental agreement.

8.
ACS Appl Mater Interfaces ; 14(28): 31862-31878, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35801412

RESUMEN

Dry reforming of methane (DRM) is a promising way to convert methane and carbon dioxide into H2 and CO (syngas). CeO2 nanorods, nanocubes, and nanospheres were decorated with 1-4 wt % Ni. The materials were structurally characterized using TEM and in situ XANES/EXAFS. The CO2 activation was analyzed by DFT and temperature-programmed techniques combined with MS-DRIFTS. Synthesized CeO2 morphologies expose {111} and {100} terminating facets, varying the strength of the CO2 interaction and redox properties, which influence the CO2 activation. Temperature-programmed CO2 DRIFTS analysis revealed that under hydrogen-lean conditions mono- and bidentate carbonates are hydrogenated to formate intermediates, which decompose to H2O and CO. In excess hydrogen, methane is the preferred reaction product. The CeO2 cubes favor the formation of a polydentate carbonate species, which is an inert spectator during DRM at 500 °C. Polydentate covers a considerable fraction of ceria's surface, resulting in less-abundant surface sites for CO2 dissociation.

9.
ACS Catal ; 11(17): 11233-11247, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34513204

RESUMEN

An increasingly utilized way for the production of propene is propane dehydrogenation. The reaction presents an alternative to conventional processes based on petroleum resources. In this work, we investigate theoretically how Cr2O3 catalyzes this reaction in oxidative and reducing environments. Although previous studies showed that the reduced catalyst is selective for the non-oxidative dehydrogenation of propane, real operating conditions are oxidative. Herein, we use multiscale modeling to investigate the difference between the oxidized and reduced catalyst and their performance. The complete reaction pathway for propane dehydrogenation, including C-C cracking, formation of side products (propyne, ethane, ethylene, acetylene, and methane), and catalyst coking on oxidized and reduced surfaces of α-Cr2O3(0001), is calculated using density functional theory with the Hubbard correction. Parameters describing adsorption, desorption, and surface reactions are used in a kinetic Monte Carlo simulation, which employed industrially relevant conditions (700-900 K, pressures up to 2 bar, and varying oxidants: N2O, O2, and none). We observe that over the reduced surface, propene and hydrogen form with high selectivity. When oxidants are used, the surface is oxidized, which changes the reaction mechanism and kinetics. During a much faster reaction, H2O forms as a coproduct in a Mars-van Krevelen cycle. Additionally, CO2 is also formed, which represents waste and adversely affects the selectivity. It is shown that the oxidized surface is much more active but prone to the formation of CO2, while the reduced surface is less active but highly selective toward propene. Moreover, the effect of the oxidant used is investigated, showing that N2O is preferred to O2 due to higher selectivity and less catalyst coking. We show that there exists an optimum degree of surface oxidation, where the yield of propene is maximized. The coke, which forms during the reaction, can be burnt away as CO2 with oxygen.

10.
ACS Sustain Chem Eng ; 9(10): 3874-3886, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33842102

RESUMEN

Chitin is the most abundant marine biopolymer, being recovered during the shell biorefining of crustacean shell waste. In its native form, chitin displays a poor reactivity and solubility in most solvents due to its extensive hydrogen bonding. This can be overcome by deacetylation. However, this process requires a high concentration of acids or bases at high temperatures, forming large amounts of toxic waste. Herein, we report on the first deacetylation with deep eutectic solvents (DESs) as an environmentally friendly alternative, requiring only mild reaction conditions. Biocompatible DESs are efficient in disturbing the native hydrogen-bonding network of chitin, readily dissolving it. First, quantum chemical calculations have been performed to evaluate the feasibility of different DESs to perform chitin deacetylation by studying their mechanism. Comparing these with the calculated barriers for garden-variety alkaline/acidic hydrolysis, which are known to proceed, prospective DESs were identified with barriers around 25 kcal·mol-1 or lower. Based on density functional theory results, an experimental screening of 10 distinct DESs for chitin deacetylation followed. The most promising DESs were identified as K2CO3:glycerol (K2CO3:G), choline chloride:acetic acid ([Ch]Cl:AA), and choline chloride:malic acid ([Ch]Cl:MA) and were subjected to further optimization with respect to the water content, process duration, and temperature. Ultimately, [Ch]Cl:MA showed the best results, yielding a degree of deacetylation (DDA) of 40% after 24 h of reaction at 120 °C, which falls slightly behind the threshold value (50%) for chitin to be considered chitosan. Further quantum chemical calculations were performed to elucidate the mechanism. Upon the removal of 40% N-acetyl groups from the chitin structure, its reactivity was considerably improved.

11.
Angew Chem Int Ed Engl ; 60(3): 1244-1253, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-32985782

RESUMEN

As one of the most demanded dicarboxylic acids, adipic acid can be directly produced from renewable sources. Hexoses from (hemi)cellulose are oxidized to aldaric acids and subsequently catalytically dehydroxylated. Hitherto performed homogeneously, we present the first heterogeneous catalytic process for converting an aldaric acid into muconic and adipic acid. The contribution of leached Re from the solid pre-reduced catalyst was also investigated with hot-filtration test and found to be inactive for dehydroxylation. Corrosive or hazardous (HBr/H2 ) reagents are avoided and simple alcohols and solid Re/C catalysts in an inert atmosphere are used. At 120 °C, the carboxylic groups are protected by esterification, which prevents lactonization in the absence of water or acidic sites. Dehydroxylation and partial hydrogenation yield monohexenoates (93 %). For complete hydrogenation to adipate, a 16 % higher activation barrier necessitates higher temperatures.

12.
ACS Catal ; 10(24): 14732-14746, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33362945

RESUMEN

Propane (C3H8) and butane (C4H10) are short straight-chain alkane molecules that are difficult to convert catalytically. Analogous to propane, butane can be dehydrogenated to butenes (also known as butylenes) or butadiene, which are used industrially as raw materials when synthesizing various chemicals (plastics, rubbers, etc.). In this study, we present results of detailed first-principles-based multiscale modelling of butane dehydrogenation, consisting of three size- and time-scales. The reaction is modelled over Cr2O3(0001) chromium oxide, which is commonly used in the industrial setting. A complete 108-step reaction pathway of butane (C4H10) dehydrogenation was studied, yielding 1-butene (CH2CHCH2CH3) and 2-butene (CH3CHCHCH3), 1-butyne (CHCCH2CH3) and 2-butyne (CH3CCCH3), butadiene (CH2CHCHCH2), butenyne (CH2CHCCH), and ultimately butadiyne (CHCCCH). We include cracking and coking reactions (yielding C1, C2, and C3 hydrocarbons) in the model to provide a thorough description of catalyst deactivation as a function of the temperature and time. Density functional theory calculations with the Hubbard U model were used to study the reaction on the atomistic scale, resulting in the complete energetics and first-principles kinetic parameters for the dehydrogenation reaction. They were cast in a kinetic model using mean-field microkinetics and kinetic Monte Carlo simulations. The former was used to obtain gas equilibrium conditions in the steady-state regime, which were fed in the latter to provide accurate surface kinetics. A full reactor simulation was used to account for the macroscopic properties of the catalytic particles: their loading, specific surface area, and density and reactor parameters: size, design, and feed gas flow. With this approach, we obtained first-principles estimates of the catalytic conversion, selectivity to products, and time dependence of the catalyst activity, which can be paralleled to experimental data. We show that 2-butene is the most abundant product of dehydrogenation, with selectivity above 90% and turn-over frequency above 10-3 s-1 at T = 900 K. Butane conversion is below 5% at such low temperature, but rises above 40% at T > 1100 K. Activity starts to drop after ∼6 h because of surface poisoning with carbon. We conclude that the dehydrogenation of butane is a viable alternative to conventional olefin production processes.

13.
ACS Sustain Chem Eng ; 8(47): 17475-17486, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33335815

RESUMEN

In this study, acidolysis of benzyl phenyl ether (BPE), being a representative lignin model compound with the α-O-4 linkage, was examined in γ-valerolactone (GVL) and a GVL/water mixture, each time acidified with sulfuric acid. The product distribution was strongly affected by water used as a cosolvent, which was found to be advantageous by inhibiting the formation of larger structures and introducing reactive OH groups instead. The experimental results indicate the GVL/water ratio as an important parameter to attain an optimal hydrolytic α-ether bond cleavage. Differences between the organosolv lignins (molecular weight distribution, OH group content, and structural features with reaction time), isolated under moderate reaction conditions, supported the findings obtained using BPE. A beneficial effect of the added water is reflected in the higher aliphatic OH group content and less intact structure. Analysis of the reaction mechanism represents an initial step toward kinetics and structure-activity correlation of biorefining industrial resources.

14.
ACS Catal ; 10(7): 4092-4102, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32953235

RESUMEN

In heterogeneous catalysis, bifunctional catalysts often outperform one-component catalysts. The activity is also strongly influenced by the morphology, size, and distribution of catalytic particles. For CO2 hydrogenation, the size of the active copper area on top of the SrTiO3 perovskite catalyst support can affect the activity, selectivity, and stability. Here, a detailed theoretical study of the effect of bifunctionality on an important chemical CO2 transformation reaction, the reverse water gas shift (RWGS) reaction, is presented. Using density functional theory computation results for the RWGS pathway on three surfaces, namely, Cu(111), SrTiO3, and the Cu/SrTiO3 interface between both solid phases, we construct the energy landscape of the reaction. The adsorbate-adsorbate lateral interactions are taken into account for catalytic surfaces, which show a sufficient intermediate coverage. The mechanism, combining all three surfaces, is used in mesoscale kinetic Monte Carlo simulations to study the turnover and yield for CO production as a function of particle size. It is shown that the reaction proceeds faster at the interface. However, including copper and the support sites in addition to the interface accelerates the conversion even further, showing that the bifunctionality of the catalyst manifests in a more complex interplay between the phases than just the interface effect, such as the hydrogen spillover. We identify three distinct effects, the electronic, cooperative, and geometric effects, and show that the surrounded smaller Cu features on the set of supporting SrTiO3 show a higher CO formation rate, resulting in a decreasing RWGS model trend with the increasing Cu island size. The findings are in parallel with experiments, showing that they explain the previously observed phenomena and confirming the size sensitivity for the catalytic RWGS reaction.

15.
Sci Rep ; 10(1): 11037, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632147

RESUMEN

The selective lignin conversion into bio-based organic mono-aromatics is a major general challenge due to complex structure itself/additional macromolecule modifications, caused by the cleavage of the ether chemical bonds during the lignocellulosic biomass organosolv pulping in acidified aqueous ethanol. Herein, the acido-lysis of connected benzyl phenyl (BPE), being a representative model compound with α-O-4 linkage, was investigated in methanol, EtOH and 75 vol% EtOH/water mixture solutions, progressing each time with protonating sulfuric acid. The effect of the physical solvent properties, acidity of the reaction process media and temperature on rate was determined. Experiments suggested BPE following SN1 mechanism due to the formation of a stable primary carbocation/polarity. The product species distribution in non-aqueous functional alcohols was strongly affected. The addition of H2O was advantageous, especially for alkoxylation. Yield was reduced by a factor of 3, consequently preserving reactive hydroxyl group. Quantitative experimental results indicated key performance parameters to achieve optimum. Organosolv lignins were further isolated under significantly moderate conditions. Consecutive structural differences observed supported findings, obtained when using BPE. H2O presence was again found to grant a higher measured -OH content. Mechanistic pathway analysis thus represents the first step when continuing to kinetics, structure-activity relationships or bio-refining industrial resources.

16.
Phys Chem Chem Phys ; 22(3): 1324-1332, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31850419

RESUMEN

Substituted phenols are known to readily react with the hydroxyl radical (OH˙), which is the most powerful atmospheric oxidant and is also most often used in advanced oxidation processes (AOP) for wastewater treatment. We report temperature-dependent (278.15-318.15 K) second order kinetic rate constants for the aqueous-phase reactions of OH˙ with phenol and four substituted phenols: catechol, phloroglucinol, pyrogallol and 3-methylcatechol, with the last two measured for the first time. The constructed Hammett plots for mono- and di-substituted phenols have the potential to be further applied for predicting the reaction rate constants of other substituted phenols at 298.15 K. This will significantly facilitate the optimization of AOP and improve the predictive capabilities of atmospheric multiphase models in the future. Moreover, an advancement in the understanding of the underlying mechanism, i.e. OH˙ addition to the aromatic ring is made by theoretical calculations at the M06-2X level. We demonstrate that the position of substituents on the aromatic ring is important for the [OH-phenol]˙ adduct formation, which is supported by the experiment and theoretical calculations. Adjacent and nonadjacent electron donor/acceptor substituents differently impact the interplay between the activation energy and entropy. We also show that explicit solvation has to be accounted for in theoretical models in order to explicitly describe the formation of the transition state.


Asunto(s)
Radical Hidroxilo/química , Fenoles/química , Temperatura , Contaminantes Químicos del Agua/química
17.
Environ Sci Technol ; 52(23): 13756-13765, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30388370

RESUMEN

Many ambiguities surround the possible mechanisms of colored and toxic nitrophenols formation in natural systems. Nitration of a biologically and environmentally relevant aromatic compound, guaiacol (2-methoxyphenol), under mild aqueous-phase conditions (ambient temperatures, pH 4.5) was investigated by a temperature-dependent experimental modeling coupled to extensive ab initio calculations to obtain the activation energies of the modeled reaction pathways. The importance of dark nonradical reactions is emphasized, involving nitrous (HNO2) and peroxynitrous (HOONO) acids. Oxidation by HOONO is shown to proceed via a nonradical pathway, possibly involving the nitronium ion (NO2+) formation. Using quantum chemical calculations at the MP2/6-31++g(d,p) level, NO2• is shown capable of abstracting a hydrogen atom from the phenolic group on the aromatic ring. In a protic solvent, the corresponding aryl radical can combine with HNO2 to yield OH• and, after a subsequent oxidation step, nitrated aromatic products. The demonstrated chemistry is especially important for understanding the aging of nighttime atmospheric deliquesced aerosol. The relevance should be further investigated in the atmospheric gaseous phase. The results of this study have direct implications for accurate modeling of the burden of toxic nitroaromatic pollutants, and the formation of atmospheric brown carbon and its associated influence on Earth's albedo and climate forcing.


Asunto(s)
Nitritos , Ácido Nitroso , Aerosoles , Nitratos , Oxidación-Reducción
18.
Environ Sci Technol ; 50(11): 5526-35, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27136117

RESUMEN

Methylnitrocatechols (MNCs) are secondary organic aerosol (SOA) tracers and major contributors to atmospheric brown carbon; however, their formation and aging processes in atmospheric waters are unknown. To investigate the importance of aqueous-phase electrophilic substitution of 3-methylcatechol with nitronium ion (NO2(+)), we performed quantum calculations of their favorable pathways. The calculations predicted the formation of 3-methyl-5-nitrocatechol (3M5NC), 3-methyl-4-nitrocatechol (3M4NC), and a negligible amount of 3-methyl-6-nitrocatechol (3M6NC). MNCs in atmospheric PM2 samples were further inspected by LC/(-)ESI-MS/MS using commercial as well as de novo synthesized authentic standards. We detected 3M5NC and, for the first time, 3M4NC. In contrast to previous reports, 3M6NC was not observed. Agreement between calculated and observed 3M5NC/3M4NC ratios cannot unambiguously confirm the electrophilic mechanism as the exclusive formation pathway of MNCs in aerosol water. However, the examined nitration by NO2(+) is supported by (1) the absence of 3M6NC in the ambient aerosols analyzed and (2) the constant 3M5NC/3M4NC ratio in field aerosol samples, which indicates their common formation pathway. The magnitude of error one could make by incorrectly identifying 3M4NC as 3M6NC in ambient aerosols was also assessed, suggesting the importance of evaluating the literature regarding MNCs with special care.


Asunto(s)
Aerosoles , Espectrometría de Masas en Tándem , Cromatografía Liquida , Compuestos Orgánicos , Agua
19.
J Chem Phys ; 141(16): 164505, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25362323

RESUMEN

Thermodynamic and structural properties of a coarse-grained model of methanol are examined by Monte Carlo simulations and reference interaction site model (RISM) integral equation theory. Methanol particles are described as dimers formed from an apolar Lennard-Jones sphere, mimicking the methyl group, and a sphere with a core-softened potential as the hydroxyl group. Different closure approximations of the RISM theory are compared and discussed. The liquid structure of methanol is investigated by calculating site-site radial distribution functions and static structure factors for a wide range of temperatures and densities. Results obtained show a good agreement between RISM and Monte Carlo simulations. The phase behavior of methanol is investigated by employing different thermodynamic routes for the calculation of the RISM free energy, drawing gas-liquid coexistence curves that match the simulation data. Preliminary indications for a putative second critical point between two different liquid phases of methanol are also discussed.


Asunto(s)
Metanol/química , Modelos Moleculares , Método de Montecarlo , Hidróxidos/química , Conformación Molecular , Termodinámica
20.
Artículo en Inglés | MEDLINE | ID: mdl-25215697

RESUMEN

A simple and computationally inexpensive core-softened model, originally proposed by Franzese [G. Franzese, J. Mol. Liq. 136, 267 (2007)], was adopted to show that it exhibits properties of waterlike fluid and hydrophobic effect. The potential used between particles is spherically symmetric with two characteristic lengths. Thermodynamics of nonpolar solvation were modeled as an insertion of a modified Lennard-Jones particle. It was investigated how the anomalous predictions of the model as well as the nonpolar solvation compare with the experimental data for water anomalies and the temperature dependence of noble gases hydration. It was shown that the model qualitatively follows the same trends as water. The model is able to reproduce waterlike anomalous properties (density maximum, heat capacity minimum, isothermal compressibility, etc.) and hydrophobic effect (minimum solubility for nonpolar solutes near ambient conditions, increased solubility of larger noble gases, etc.). It is argued that the model yields similar results as more complex and computationally expensive models.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Modelos Teóricos , Gases Nobles/química , Termodinámica , Agua/química , Simulación por Computador , Enlace de Hidrógeno , Metano/química , Método de Montecarlo , Presión , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA