Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Water Res ; 256: 121526, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583333

RESUMEN

The presence of Ag(I) and Pb(II) ions in wastewater poses a significant threat to human health in contemporary times. This study aims to explore the development of a novel and economical adsorbent by grafting MnO2 particles onto low-rank coal, providing an innovative solution for the remediation of water contaminated with silver and lead. The synthesized nanocomposites, referred to as MnO2-Coal, underwent thorough characterization using FTIR, XRD, BET, and SEM to highlight the feasibility of in-situ surface modification of coal with MnO2 nanoparticles. The adsorption of Ag(I) and Pb(II) from their respective aqueous solution onto MnO2-Coal was systematically investigated, with optimization of key parameters such as pH, temperature, initial concentration, contact time, ionic strength, and competing ions. Remarkably adsorption equilibrium was achieved within a 10 min, resulting in impressive removal rates of 80-90 % for both Ag(I) and Pb(II) at pH 6. The experimental data were evaluated using Langmuir, Freundlich, and Temkin isotherm models. The Langmuir isotherm model proved to be more accurate in representing the adsorption of Ag(I) and Pb(II) ions onto MnO2-Coal, exhibiting high regression coefficients (R2 = 0.99) and maximum adsorption capacities of 93.57 and 61.98 mg/g, along with partition coefficients of 4.53 and 71.92 L/g for Ag(I) and Pb(II), respectively, at 293 K. Kinetic assessments employing PFO, PSO, Elovich, and IPD models indicated that the PFO and PSO models were most suitable for adsorption mechanism of Pb(II) and Ag(I) on MnO2-Coal composites, respectively. Moreover, thermodynamic evaluation revealed the spontaneous and endothermic adsorption process for Ag(I), while exothermic behavior for adsorption of Pb(II). Importantly, this approach not only demonstrates cost-effectiveness but also environmental friendliness in treating heavy metal-contamination in water. The research suggests the potential of MnO2-Coal composites as efficient and sustainable adsorbents for water purification applications.


Asunto(s)
Plomo , Compuestos de Manganeso , Óxidos , Plata , Aguas Residuales , Contaminantes Químicos del Agua , Plata/química , Plomo/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Adsorción , Compuestos de Manganeso/química , Óxidos/química , Carbón Mineral , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Cinética
2.
Sci Rep ; 13(1): 19696, 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37952015

RESUMEN

Toxic fission products, such as cesium (137Cs) and iodine (129I) are of great concern because of their long half-lives and high solubility in water. The simultaneous removal of Cs and I using a single adsorbent is an area of increasing interest. In this study, MXene/silver nanowire (AgNW) composite was synthesized through physical mixing and employed for simultaneous removal of iodide (I-) and cesium (Cs+) ions from contaminated water. The MXene/AgNW composite demonstrated excellent adsorption capacities of 84.70 and 26.22 mg/g for I- and Cs+, respectively. The experimental data supported the hypothesis of multilayer adsorption of Cs+ owing to the inter-lamellar structures and the presence of heterogeneous adsorption sites in MXene. The interaction between I- and the AgNW involved chemisorption followed by monolayer adsorption. MXene/AgNW composite material exhibited promising results in the presence of competitive ions under extreme pH conditions. Thus, synthesized composite materials holds promising potential as an adsorbent for the remediation of radioactive liquid waste.

3.
Chemosphere ; 303(Pt 2): 135088, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35636609

RESUMEN

In this study, a flower-like porous δ-MnO2 nanostructure was synthesized by a microwave-assisted hydrothermal process for adsorptive removal of strontium (Sr(II)) and cesium (Cs(I)) from wastewater. The prepared δ-MnO2 nanosorbent exhibited superior affinity for Sr(II) over Cs(I) in the single-solute system, with partition coefficient (PC) values of 10.2 and 2.3 L/g, respectively, at pH 6.0. In the two-solute system, the flower-like δ-MnO2 also adsorbed Sr(II) (PC = 3.81 L/g) more selectively than Cs(I) (PC 1.15 L/g). Further, their adsorption capacities decreased by 12 and 16%, respectively, relative to the single-solute system. In contrast, adsorption of the ions onto δ-MnO2 was affected less sensitively in dual than in single system when changes occurred in environmental variables such as pH (2-8) and ionic strength (1-100 mM). Adsorption kinetics, thermodynamics, and isotherm studies demonstrated the pivotal role of the monolayer surface active sites of endothermic δ-MnO2 (e.g., a complexation interaction with Mn-OH). Furthermore, the δ-MnO2 nanosorbent exhibited good regenerability, retaining more than 80% of its adsorption capacity when tested over four reuse cycles. The overall results of this study are expected to help establish strategies to effectively remove metal contaminants from wastewater using a green and low-cost hierarchical nanosorbent.


Asunto(s)
Cesio/química , Compuestos de Manganeso , Estroncio/química , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Compuestos de Manganeso/química , Microondas , Óxidos/química , Aguas Residuales , Agua , Contaminantes Químicos del Agua/análisis
4.
Dalton Trans ; 48(31): 11803-11812, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31304494

RESUMEN

Industrial utilization of nuclear resources greatly depends on the effective treatment of nuclear waste. The efficient removal of radioactive nuclides from liquid effluents by using different adsorbents has thus become crucial. Herein, for the first time, two-dimensional transition metal carbides (MXenes) are investigated as scavengers of cesium (Cs+) from contaminated water. Due to the combined advantages of the layered structure and the presence of heterogeneous sites (hydroxyl, oxygen and fluorine groups), the adsorbent reached the steady state within 1 min with the maximum Cs+ adsorption capacity of 25.4 mg g-1 at room temperature. The kinetics studies of the Cs+ scavenging process demonstrated that the adsorption of Cs+ followed the pseudo-second-order model whereas the adsorption equilibrium data obeyed the Freundlich model. Thermodynamic studies revealed that the adsorption process was endothermic. The adsorbent showed an excellent Cs+ removal efficiency in neutral to slightly alkaline solutions. Moreover, it can retain Cs+ even in the presence of a high concentration of competing cations (Li+, Na+, K+, Mg2+ and Sr2+). The Cs+ loaded adsorbent was regenerated with a 0.2 M HCl solution and reused at least five times for over 91% removal of contaminants.

5.
RSC Adv ; 8(5): 2521-2540, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35541472

RESUMEN

As a result of extensive research efforts by several research groups, magnetite-based materials have gained enormous attention in diverse fields including biomedicine, catalysis, energy and data storage devices, magnetic resonance imaging, and environmental remediation. Owing to their low production cost, ease of modification, biocompatibility, and superparamagnetism, the use of these materials for the abatement of environmental toxicants has been increasing continuously. Here we focus on the recent advances in the use of magnetite-based adsorbents for removal of radionuclides (such as 137Cs(i), 155Eu(iii), 90Sr(ii), 238U(vi), etc.) from diverse aqueous phases. This review summarizes the preparation and surface modification of magnetite-based adsorbents, their physicochemical properties, adsorption behavior and mechanism, and diverse conventional and recent environmental technological options for the treatment of water contaminated with radionuclides. In addition, case studies for the removal of radionuclides from actual contaminated sites are discussed, and finally the optimization of magnetite-based remedial solutions is presented for practical application.

6.
Biol Trace Elem Res ; 157(1): 24-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24254879

RESUMEN

The study reports enhanced Fe, Cu, and Zn contents in breast tissues, a probable risk factor of breast cancer in females. Forty-one formalin-fixed breast tissues were analyzed using atomic absorption spectrophotometry. Twenty malignant, six adjacent to malignant and 15 benign tissues samples were investigated. The malignant tissues samples were of grade 11 and type invasive ductal carcinoma. The quantitative comparison between the elemental levels measured in the two types of specimen (benign and malignant) tissues (removed after surgery) suggests significant elevation of these metals (Fe, Cu, and Zn) in the malignant tissue. The specimens were collected just after mastectomy of women aged 19 to 59 years from the hospitals of Islamabad and Rawalpindi, Pakistan. Most of the patients belong to urban areas of Pakistan. Findings of study depict that these elements have a promising role in the initiation and development of carcinoma as consistent pattern of elevation for Fe, Cu, and Zn was observed. The results showed the excessive accumulation of Fe (229 ± 121 mg/L) in malignant breast tissue samples of patients (p < 0.05) to that in benign tissues samples (49.1 ± 11.4 mg/L). Findings indicated that excess accumulation of iron in malignant tissues can be a risk factor of breast cancer. In order to validate our method of analysis, certified reference material muscle tissue lyophilized (IAEA) MA-M-2/TM was analyzed for metal studied. Determined concentrations were quite in good agreement with certified levels. Asymmetric concentration distribution for Fe, Cu, and Zn was observed in both malignant and benign tissue samples.


Asunto(s)
Neoplasias de la Mama/química , Mama/química , Neoplasias de la Mama/epidemiología , Cobre/análisis , Femenino , Humanos , Hierro/análisis , Límite de Detección , Probabilidad , Factores de Riesgo , Espectrofotometría Atómica , Zinc/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA