Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Med Oncol ; 41(11): 293, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39428440

RESUMEN

Chemotherapy is a key treatment option for gastric cancer, but over 50% of patients develop either inherent or acquired resistance to these drugs, resulting in a 5-year survival rate of only about 20%. The primary treatment for advanced gastric cancer typically involves chemotherapy based on platinum or fluorouracil. Several factors can contribute to platinum resistance, including decreased drug uptake, increased drug efflux or metabolism, enhanced DNA repair, activation of pro-survival pathways, and inhibition of pro-apoptotic pathways. In recent years, there has been significant progress in biology aimed at finding innovative and more effective methods to overcome chemotherapy resistance. Small interfering RNAs (siRNAs) have emerged as a significant advancement in gene expression regulation, showing promise in enhancing the sensitivity of gastric cancer cells to chemotherapy drugs. However, siRNA therapies still face major challenges, particularly in terms of stability and efficient delivery in vivo. This article discusses the advances in siRNA therapy and its potential role in overcoming resistance to chemotherapeutic drugs such as cisplatin, 5-FU, doxorubicin, and paclitaxel in the treatment of gastric cancer.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , ARN Interferente Pequeño , Neoplasias Gástricas , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Humanos , ARN Interferente Pequeño/genética , Resistencia a Antineoplásicos/genética , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales
2.
Cell Biochem Biophys ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377981

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a range of conditions that start with the accumulation of fat in the liver (hepatic steatosis) and can progress to more severe stages like steatohepatitis (NASH) and fibrosis without drinking alcohol. Environmental and genetic variables both contribute to MAFLD's development, with various biological processes and mediators involved at every phase. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that are not translated into protein and are over 200 nucleotides long. They can impact genes that encode protein by controlling transcriptional and post-transcriptional procedures. Dysregulation of lncRNA has been connected to several liver diseases, including MAFLD. Recent research has linked lncRNAs to MAFLD pathology in both patients and animal models. However, the roles of most lncRNAs in MAFLD pathology are still not well recognized. This review provides a comprehensive catalog of recently reported lncRNAs in the pathogenesis of MAFLD and summarizes the current knowledge of lncRNAs usage as therapeutic strategies in MAFLD, the most common liver disease. Collectively, lncRNA's targeting could potentially offer a therapeutic approach by modulating MAFLD.

3.
Sci Rep ; 14(1): 25261, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39448720

RESUMEN

This article is devoted to the synthesis of a new magnetic palladium catalyst that has been immobilized on A-TT-Pd coated-magnetic Fe3O4 nanoparticles. Such surface functionalization of magnetic particles is a promising method to bridge the gap between heterogeneous and homogeneous catalysis approaches. The structure, morphology, and physicochemical properties of the particles were characterized through different analytical techniques, including TEM, FT-IR, XRD, SEM, EDS, TGA-DTG, ICP, and VSM techniques. The obtained Fe3O4@SiO2@A-TT-Pd performance can show excellent catalytic activity for the synthesis of diaryl ethers and oxidation of sulfides, and the corresponding products were obtained with high yields. The advantages of this catalyst include a simple test method, green reaction conditions, no use of dangerous solvents, short reaction time, low catalyst loading, and reusability. Also, the nanocatalyst was easily separated from the reaction mixture with the help of a bar magnet and recovered and reused several times without loss of stability and activity.

4.
Inflammation ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225914

RESUMEN

Agmatine (AGM), a naturally occurring polyamine derived from L-arginine, has shown significant potential for neuroprotection in Parkinson's Disease (PD) due to its multifaceted biological activities, including antioxidant, anti-inflammatory, and anti-apoptotic effects. This review explores the therapeutic potential of AGM in treating PD, focusing on its neuroprotective mechanisms and evidence from preclinical studies. AGM has been demonstrated to mitigate the neurotoxic effects of rotenone (ROT) by improving motor function, reducing oxidative stress markers, and decreasing levels of pro-inflammatory cytokines in animal models. Additionally, AGM protects against the loss of TH + neurons, crucial for dopamine synthesis. The neuroprotective properties of AGM are attributed to its ability to modulate several key pathways implicated in PD pathogenesis, such as inhibition of NMDA receptors, activation of Nrf2, and suppression of the HMGB1/ RAGE/ TLR4/ MyD88/ NF-κB signaling cascade. Furthermore, the potential of agmatine to promote neurorestoration is highlighted by its role in enhancing neuroplasticity elements such as CREB, BDNF, and ERK1/2. This review highlights agmatine's promising therapeutic potential in PD management, suggesting that it could offer both symptomatic relief and neuroprotective benefits, thereby modifying the disease course and improving the quality of life for patients. Further research is warranted to translate these preclinical findings into clinical applications.

5.
J Xray Sci Technol ; 32(5): 1331-1348, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39093110

RESUMEN

INTRODUCTION: Intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) are the main radiotherapy techniques for treating and managing rectal cancer. Collimator rotation is one of the crucial parameters in radiotherapy planning, and its alteration can cause dosimetric variations. This study assessed the effect of collimator rotation on the dosimetric results of various IMRT and VMAT plans for rectal cancer. MATERIALS AND METHODS: Computed tomography (CT) images of 20 male patients with rectal cancer were utilized for IMRT and VMAT treatment planning with various collimator angles. Nine different IMRT techniques (5, 7, and 9 coplanar fields with collimator angles of 0°, 45°, and 90°) and six different VMAT techniques (1 and 2 full coplanar arcs with collimator angles of 0°, 45°, and 90°) were planned for each patient. The dosimetric results of various treatment techniques for target tissue (conformity index [CI] and homogeneity index [HI]) and organs at risk (OARs) sparing (parameters obtained from OARs dose-volume histograms [DVH]) as well as radiobiological findings were analyzed and compared. RESULTS: The 7-fields IMRT technique demonstrated lower bladder doses (V40Gy, V45Gy), unaffected by collimator rotation. The 9-fields IMRT and 2-arcs VMAT (excluding the 90-degree collimator) had the lowest V35Gy and V45Gy. A 90-degree collimator rotation in 2-arcs VMAT significantly increased small bowel and bladder V45Gy, femoral head doses, and HI values. Radiobiologically, the 90-degree rotation had adverse effects on small bowel NTCP (normal tissue complication probability). No superiority was found for a 45-degree collimator rotation over 0 or 30 degrees in VMAT techniques. CONCLUSION: Collimator rotation had minimal impact on dosimetric parameters in IMRT planning but is significant in VMAT techniques. A 90-degree rotation in VMAT, particularly in a 2-full arc technique, adversely affects PTV homogeneity index, bladder dose, and small bowel NTCP. Other evaluated collimator angles did not significantly affect VMAT dosimetrical or radiobiological outcomes.


Asunto(s)
Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Neoplasias del Recto , Humanos , Radioterapia de Intensidad Modulada/métodos , Neoplasias del Recto/radioterapia , Neoplasias del Recto/diagnóstico por imagen , Masculino , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo/efectos de la radiación , Rotación , Tomografía Computarizada por Rayos X/métodos , Radiometría/métodos
6.
Pathol Res Pract ; 261: 155489, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111016

RESUMEN

Oral squamous cell carcinoma (OSCC) is considered the most common type of head and neck squamous cell carcinoma (HNSCC) as it holds 90 % of HNSCC cases that arise from multiple locations in the oral cavity. The last three decades witnessed little progress in the diagnosis and treatment of OSCC the aggressive tumor. However, in-depth knowledge about OSCC's pathogenesis, staging & grading, hallmarks, and causative factors is a prime requirement in advanced diagnosis and treatment for OSCC patients. Therefore present review was intended to comprehend the OSCCs' prevalence, staging & grading, molecular pathogenesis including premalignant stages, various hallmarks, etiology, diagnostic methods, treatment (including FDA-approved drugs with the mechanism of action and side effects), and theranostic agents. The current review updates that for a better understanding of OSCC progress tumor-promoting inflammation, sustained proliferative signaling, and growth-suppressive signals/apoptosis capacity evasion are the three most important hallmarks to be considered. This review suggests that among all the etiology factors the consumption of tobacco is the major contributor to the high incidence rate of OSCC. In OSCC diagnosis biopsy is considered the gold standard, however, toluidine blue staining is the easiest and non-invasive method with high accuracy. Although there are various therapeutic agents available for cancer treatment, however, a few only are approved by the FDA specifically for OSCC treatment. The present review recommends that among all available OSCC treatments, the antibody-based CAR-NK is a promising therapeutic approach for future cancer treatment. Presently review also suggests that theranostics have boosted the advancement of cancer diagnosis and treatment, however, additional work is required to refine the role of theranostics in combination with different modalities in cancer treatment.


Asunto(s)
Neoplasias de la Boca , Humanos , Neoplasias de la Boca/patología , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/terapia , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/patología
7.
Cell Biochem Biophys ; 82(3): 1735-1750, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38884861

RESUMEN

The first host defense systems are the innate immune response and the inflammatory response. Among innate immune cells, macrophages, are crucial because they preserve tissue homeostasis and eradicate infections by phagocytosis, or the ingestion of particles. Macrophages exhibit phenotypic variability contingent on their stimulation state and tissue environment and may be detected in several tissues. Meanwhile, critical inflammatory functions are played by macrophage scavenger receptors, in particular, SR-A1 (CD204) and SR-E3 (CD206), in a variety of pathophysiologic events. Such receptors, which are mainly found on the surface of multiple types of macrophages, have different effects on processes, including atherosclerosis, innate and adaptive immunity, liver and lung diseases, and, more recently, cancer. Although macrophage scavenger receptors have been demonstrated to be active across the disease spectrum, conflicting experimental findings and insufficient signaling pathways have hindered our comprehension of the molecular processes underlying its array of roles. Herein, as SR-A1 and SR-E3 functions are often binary, either protecting the host or impairing the pathophysiology of cancers has been reviewed. We will look into their function in malignancies, with an emphasis on their recently discovered function in macrophages and the possible therapeutic benefits of SR-A1 and SR-E3 targeting.


Asunto(s)
Macrófagos , Neoplasias , Receptores Depuradores de Clase A , Animales , Humanos , Progresión de la Enfermedad , Macrófagos/metabolismo , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Receptores de Superficie Celular/metabolismo , Receptores Depuradores de Clase A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA