Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Parasit Vectors ; 17(1): 75, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374075

RESUMEN

BACKGROUND: Bovine babesiosis caused by Babesia bovis is one of the most important tick-borne diseases of cattle in tropical and subtropical regions. Babesia bovis parasites have a complex lifecycle, including development within the mammalian host and tick vector. In the tick midgut, extracellular Babesia parasites transform into gametes that fuse to form zygotes. To date, little is known about genes and proteins expressed by male gametes. METHODS AND RESULTS: We developed a method to separate male gametes from in vitro induced B. bovis culture. Separation enabled the validation of sex-specific markers. Collected male gametocytes were observed by Giemsa-stained smear and live-cell fluorescence microscopy. Babesia male gametes were used to confirm sex-specific markers by quantitative real-time PCR. Some genes were found to be male gamete specific genes including pka, hap2, α-tubulin II and znfp2. However, α-tubulin I and ABC transporter, trap2-4 and ccp1-3 genes were found to be upregulated in culture depleted of male gametes (female-enriched). Live immunofluorescence analysis using polyclonal antibodies confirmed surface expression of HAP2 by male and TRAP2-4 by female gametes. These results revealed strong markers to distinguish between B. bovis male and female gametes. CONCLUSIONS: Herein, we describe the identification of sex-specific molecular markers essential for B. bovis sexual reproduction. These tools will enhance our understanding of the biology of sexual stages and, consequently, the development of additional strategies to control bovine babesiosis.


Asunto(s)
Babesia bovis , Babesia , Babesiosis , Enfermedades de los Bovinos , Garrapatas , Bovinos , Femenino , Masculino , Animales , Babesia bovis/genética , Babesiosis/parasitología , Tubulina (Proteína) , Babesia/genética , Garrapatas/parasitología , Biomarcadores , Células Germinativas , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/parasitología , Mamíferos
2.
Parasit Vectors ; 16(1): 16, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650585

RESUMEN

BACKGROUND: Babesia bovis, an intra-erythrocytic apicomplexan parasite, is one of the causative agents of bovine babesiosis, the most important tick-borne disease of cattle in tropical and subtropical regions. Babesia bovis has a complex life-cycle that includes sexual development within the tick vector. The development of a transmission blocking vaccine to control bovine babesiosis requires the identification of antigens displayed on the surface of the parasite during its development within tick vectors. Four B. bovis cysteine-rich GCC2/GCC3 domain protein (BboGDP) family members were previously identified and are differentially expressed as discrete pairs by either blood stages or kinetes. In this study we focused on two family members, BboGDP1 and -3, that are expressed by Babesia parasites during tick infection. METHODS AND RESULTS: Transcription analysis using quantitative PCR demonstrated that BboGDP1 and -3 were upregulated in in vitro-induced sexual stage parasites and during parasite development in the tick midgut. Moreover, protein expression analysis of BboGDP1 and -3 during the development of sexual stages in in vitro culture was consistent with their transcription profile. Live immunofluorescence analysis using polyclonal antibodies confirmed surface expression of BboGDP1 and -3 on in vitro-induced sexual stage parasites. In addition, fixed immunofluorescence analysis showed reactivity of anti-BboGDP1 and -3 polyclonal antibodies to kinetes. CONCLUSIONS: The collective data indicate that BboGDP1 and -3 are expressed by kinetes and on the surface of sexual stages of the parasites. The identified parasite surface membrane proteins BboGDP1 and -3 are potential candidates for the development of a B. bovis transmission blocking vaccine.


Asunto(s)
Babesia bovis , Babesiosis , Enfermedades de los Bovinos , Rhipicephalus , Vacunas , Animales , Bovinos , Rhipicephalus/metabolismo , Babesiosis/parasitología , Cisteína/metabolismo , Vacunas/metabolismo , Proteínas de la Membrana/metabolismo , Enfermedades de los Bovinos/parasitología
3.
Microorganisms ; 10(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36363765

RESUMEN

The tick-transmitted disease bovine babesiosis causes significant economic losses in many countries around the world. Current control methods include modified live-attenuated vaccines that have limited efficacy. Recombinant proteins could provide effective, safe, and low-cost alternative vaccines. We compared the expression of the Babesia bovis thrombospondin-related anonymous protein (TRAP) family from parasites in bovine blood, in vitro induced sexual stages, and kinetes from tick hemolymph. Quantitative PCR showed that in blood and sexual stages, TRAP3 was highly transcribed as compared to the other TRAPs. In contrast, the TRAP1 gene was highly transcribed in kinetes as compared to the other TRAPs. Fixed immunofluorescence assays showed that TRAP2, 3, and 4 proteins were expressed by both blood and sexual stages. Conversely, TRAP1 protein, undetected on blood and induced sexual stages, was the only family member expressed by kinetes. Live IFA revealed that TRAP2, 3, and 4 proteins were expressed on the surface of both B. bovis blood and sexual stages. Modeling of B. bovis TRAP1 and TRAP4 tertiary structure demonstrated both proteins folded the metal-ion-dependent adhesion site (MIDAS) domain structure of Plasmodium TRAP. In conclusion, TRAP proteins may serve as potential vaccine targets to prevent infection of bovine and ticks with B. bovis essential for controlling the spread of bovine babesiosis.

4.
Front Cell Infect Microbiol ; 12: 877525, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711652

RESUMEN

Tick midgut is the primary infection site required by tick-borne pathogens to initiate their development for transmission. Despite the biological significance of this organ, cell cultures derived exclusively from tick midgut tissues are unavailable and protocols for generating primary midgut cell cultures have not been described. To study the mechanism of Anaplasma marginale-tick cell interactions, we successfully developed an in vitro Dermacentor andersoni primary midgut cell culture system. Midgut cells were maintained for up to 120 days. We demonstrated the infection of in vitro midgut cells by using an A. marginale omp10::himar1 mutant with continued replication for up to 10 days post-infection. Anaplasma marginale infection of midgut cells regulated the differential expression of tick α-(1,3)-fucosyltransferases A1 and A2. Silencing of α-(1,3)-fucosyltransferase A2 in uninfected midgut cells reduced the display of fucosylated glycans and significantly lowered the susceptibility of midgut cells to A. marginale infection, suggesting that the pathogen utilized core α-(1,3)-fucose of N-glycans to infect tick midgut cells. This is the first report using in vitro primary D. andersoni midgut cells to study A. marginale-tick cell interactions at the molecular level. The primary midgut cell culture system will further facilitate the investigation of tick-pathogen interactions, leading to the development of novel intervention strategies for tick-borne diseases.


Asunto(s)
Anaplasma marginale , Anaplasmosis , Dermacentor , Anaplasma , Anaplasma marginale/genética , Animales , Técnicas de Cultivo de Célula , Dermacentor/metabolismo , Polisacáridos/metabolismo
5.
Pathogens ; 11(6)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35745477

RESUMEN

Bovine babesiosis is caused by apicomplexan pathogens of the genus Babesia, including B. bovis. This protozoan parasite has a complex life cycle involving dynamic changes to its transcriptome during the transition between the invertebrate and vertebrate hosts. Studying the role of genes upregulated by tick stage parasites has been hindered by the lack of appropriate tools to study parasite gene products in the invertebrate host. Herein, we present tfBbo5480, a transfected B. bovis cell line, constitutively expressing enhanced green fluorescent protein (eGFP) created by a whole gene replacement transfection strategy, that was capable of completing the parasite's entire life cycle in both the vertebrate and invertebrate hosts. tfBbo5480 was demonstrated to respond to in vitro sexual stage induction and upon acquisition by the female tick vector, Rhipicephalus microplus, the tick specific kinete stage of tfBbo5480 was detected in tick hemolymph. Larvae from tfBbo5480 exposed R. microplus female ticks successfully transmitted the transfected parasite to a naïve calf. The development of the whole gene replacement strategy will permit a deeper understanding of the biology of parasite-host-vector triad interactions and facilitate the evaluation of upregulated genes during the parasite's journey through the tick vector leading to new intervention strategies for the control of bovine babesiosis.

6.
Pathogens ; 11(3)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35335668

RESUMEN

Babesia bovis, a tick-transmitted apicomplexan protozoon, infects cattle in tropical and subtropical regions around the world. In the apicomplexans Toxoplasma gondii and Plasmodium falciparum, rhomboid serine protease 4 (ROM4) fulfills an essential role in host cell invasion. We thus investigated B. bovis ROM4 coding genes; their genomic organization; their expression in in vitro cultured asexual (AS) and sexual stages (SS); and strain polymorphisms. B. bovis contains five rom4 paralogous genes in chromosome 2, which we have named rom4.1, 4.2, 4.3, 4.4 and 4.5. There are moderate degrees of sequence identity between them, except for rom4.3 and 4.4, which are almost identical. RT-qPCR analysis showed that rom4.1 and rom4.3/4.4, respectively, display 18-fold and 218-fold significantly higher (p < 0.01) levels of transcription in SS than in AS, suggesting a role in gametogenesis-related processes. In contrast, transcription of rom4.4 and 4.5 differed non-significantly between the stages. ROM4 polymorphisms among geographic isolates were essentially restricted to the number of tandem repeats of a 29-amino acid sequence in ROM4.5. This sequence repeat is highly conserved and predicted as antigenic. B. bovis ROMs likely participate in relevant host−pathogen interactions and are possibly useful targets for the development of new control strategies against this pathogen.

7.
Parasit Vectors ; 15(1): 49, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35135602

RESUMEN

BACKGROUND: There have been ongoing efforts to identify anti-tick vaccine targets to protect cattle from infestation with cattle fever ticks Rhipicephalus (Boophilus) microplus. Two commercial vaccines based on the tick gut protein Bm86 have had variable effectiveness, which has led to poor acceptance, and numerous studies have attempted to identify vaccine antigens that will provide more consistently effective protection. Transcriptomic analysis of R. microplus led to identification of three aquaporin genes annotated to code for transmembrane proteins involved in the transport of water across cell membranes. Previous work showed that vaccination with full-length recombinant aquaporin 1 (RmAQP1) reduced tick burdens on cattle. Targeted silencing of aquaporin 2 (RmAQP2) expression suggested it might also be a good anti-tick vaccination target. METHODS: Three synthetic peptides from the predicted extracellular domains of RmAQP2 were used to vaccinate cattle. Peptides were conjugated to keyhole limpet hemocyanin (KLH) as an antigenic carrier molecule. We monitored the antibody response with ELISA and challenged vaccinated cattle with R. microplus larvae. RESULTS: There was a 25% reduction overall in the numbers of ticks feeding to repletion on the vaccinated cattle. Immune sera from vaccinated cattle recognized native tick proteins on a western blot and reacted to the three individual synthetic peptides in an ELISA. The vaccinated calf with the highest total IgG titer was not the most effective at controlling ticks; ratios of IgG isotypes 1 and 2 differed greatly among the three vaccinated cattle; the calf with the highest IgG1/IgG2 ratio had the fewest ticks. Ticks on vaccinated cattle had significantly greater replete weights compared to ticks on controls, mirroring results seen with RNA silencing of RmAQP2. However, protein data could not confirm that vaccination had any impact on the ability of the tick to concentrate its blood meal by removing water. CONCLUSIONS: A reduced number of ticks feed successfully on cattle vaccinated to produce antibodies against the extracellular domains of RmAQP2. However, our predicted mechanism, that antibody binding blocks the ability of RmAQP2 to move water out of the blood meal, could not be confirmed. Further study will be required to define the mechanism of action and to determine whether these vaccine targets will be useful components of an anti-tick vaccine cocktail.


Asunto(s)
Enfermedades de los Bovinos , Rhipicephalus , Infestaciones por Garrapatas , Vacunas , Animales , Acuaporina 2 , Bovinos , Enfermedades de los Bovinos/prevención & control , Péptidos , Infestaciones por Garrapatas/prevención & control , Infestaciones por Garrapatas/veterinaria , Vacunación
8.
Parasit Vectors ; 14(1): 395, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376245

RESUMEN

BACKGROUND: Babesia bovis is one of the most significant tick-transmitted pathogens of cattle worldwide. Babesia bovis parasites have a complex lifecycle, including development within the mammalian host and tick vector. Each life stage has developmental forms that differ in morphology and metabolism. Differentiation between these forms is highly regulated in response to changes in the parasite's environment. Understanding the mechanisms by which Babesia parasites respond to environmental changes and the transmission cycle through the biological vector is critically important for developing bovine babesiosis control strategies. RESULTS: In this study, we induced B. bovis sexual stages in vitro using xanthurenic acid and documented changes in morphology and gene expression. In vitro induced B. bovis sexual stages displayed distinctive protrusive structures and surface ruffles. We also demonstrated the upregulation of B. bovis calcium-dependent protein kinase 4 (cdpk4), tubulin-tyrosine ligase (ttl), and methyltransferase (mt) genes by in vitro induced sexual stages and during parasite development within tick midguts. CONCLUSIONS: Similar to other apicomplexan parasites, it is likely that B. bovis upregulated genes play a vital role in sexual reproduction and parasite transmission. Herein, we document the upregulation of cdpk4, ttl, and mt genes by both B. bovis in vitro induced sexual stages and parasites developing in the tick vector. Understanding the parasite's biology and identifying target genes essential for sexual reproduction will enable the production of non-transmissible live vaccines to control bovine babesiosis.


Asunto(s)
Babesia bovis/efectos de los fármacos , Babesia bovis/genética , Expresión Génica , Estadios del Ciclo de Vida/efectos de los fármacos , Metiltransferasas/genética , Péptido Sintasas/genética , Proteínas Quinasas/genética , Xanturenatos/farmacología , Animales , Babesiosis/parasitología , Babesiosis/transmisión , Bovinos , Enfermedades de los Bovinos/parasitología , Femenino , Estadios del Ciclo de Vida/genética , Masculino , Garrapatas/parasitología
9.
Parasit Vectors ; 12(1): 271, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138276

RESUMEN

BACKGROUND: Babesia bigemina is an apicomplexan parasite transovarially transmitted via Rhipicephalus ticks that infect red blood cells and causes bovine babesiosis, a poorly controlled severe acute disease in cattle. New methods of control are urgently needed, including the development of transmission blocking vaccines (TBV). Babesia bigemina reproduces sexually in the gut of adult female R. microplus upon acquisition following a blood meal. Sexual reproduction results in zygotes that infect gut epithelial cells to transform into kinete stage parasites, which invade tick ovaries and infects the egg mass. The subsequent tick generation transmits B. bigemina upon feeding on bovine hosts. An important limitation for developing novel TBV is that the pattern of protein expression in B. bigemina tick stages, such as the kinete stage, remain essentially uncharacterized. RESULTS: We determined the protein expression profile of three B. bigemina putative tick stage candidates BbiKSP (BBBOND_0206730), CCp2 and CCp3. We found that BbiKSP expression was restricted to B. bigemina kinetes. CCp2 and CCp3, previously shown to be expressed by induced sexual stages, were also expressed by kinetes. Importantly, none of these proteins were expressed by B. bigemina blood stages. CONCLUSIONS: Babesia bigemina kinetes express BbiKSP, CCp2 and CCp3 proteins, therefore, these proteins may play important roles during B. bigemina development within tick hemolymph and may serve as potential candidate targets for the development of TBV.


Asunto(s)
Babesia/genética , Proteómica , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Animales , Babesiosis/transmisión , Bovinos , Enfermedades de los Bovinos/parasitología , Femenino , Técnica del Anticuerpo Fluorescente , Estadios del Ciclo de Vida , Ovario/parasitología , Reproducción , Rhipicephalus/parasitología
10.
Parasit Vectors ; 12(1): 7, 2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30611310

RESUMEN

BACKGROUND: Rhipicephalus microplus is an efficient biological vector of Babesia bovis, a causative agent of bovine babesiosis. Babesia bovis is passed transovarially to the next generation of ticks, which then transmit the parasite to naïve animals. Due to the importance of the R. microplus ovary for tick reproduction and transmission of B. bovis, we investigated the hypothesis that silencing vitellogenin receptor gene expression in the ovary during tick feeding on B. bovis-infected cattle would affect parasite transmission to the next generation of ticks. RESULTS: Silencing expression of the vitellogenin receptor in the ovary by RNA interference, resulted in reduced tick fertility. We observed reduced egg production (i.e. reduced weight of eggs), a lower rate of embryonic development, and a reduction in hatching. Analysis of individual larvae by PCR confirmed that RNAi mediated downregulation of the R. microplus vitellogenin receptor and also interfered with transovarial transmission of B. bovis. None of the larvae (0/58) from the RmVgR dsRNA-injected group were PCR-positive, whereas 12% (7/58) and 17% (10/58) of larvae from the non-injected and buffer-injected control groups, respectively, were infected with B. bovis. CONCLUSIONS: The combined effects of reduced fecundity and reduced infection in surviving larvae resulting from silencing indicate that vitellogenin receptor is essential for tick reproduction and may play a vital role in B. bovis transmission.


Asunto(s)
Babesia bovis/fisiología , Babesiosis/transmisión , Enfermedades de los Bovinos/transmisión , Proteínas del Huevo/genética , Receptores de Superficie Celular/genética , Rhipicephalus/genética , Animales , Babesiosis/parasitología , Bovinos , Enfermedades de los Bovinos/parasitología , Femenino , Silenciador del Gen , Masculino , Oocitos/fisiología , Ovario/fisiología , Interferencia de ARN , Rhipicephalus/parasitología , Vitelogeninas/metabolismo
11.
Parasit Vectors ; 11(1): 480, 2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143025

RESUMEN

BACKGROUND: Bovine babesiosis is caused by apicomplexan pathogens of the genus Babesia such as B. bigemina and B. bovis. These tick-borne pathogens have a complex life-cycle involving asexual multiplication in vertebrate hosts and sexual reproduction in invertebrate vectors. In the tick midgut, extracellular Babesia parasites transform into gametes that fuse to form zygotes. Understanding the mechanisms that underlie formation of extracellular Babesia tick stages is an important step towards developing control strategies for preventing tick infection and subsequent parasite transmission. RESULTS: We induced B. bigemina sexual stages in vitro by exposing parasites to Tris 2-carboxyethyl phosphine (TCEP). Subsequently, we identified a novel putative methyltransferase gene (BBBOND_0204030) that is expressed uniquely in all B. bigemina tick stages but not in blood stages. In vitro TCEP-exposed B. bigemina presented diverse morphology including parasites with long projections, round forms and clusters of round forms indicative of sexual stage induction. We confirmed the development of sexual stages by detecting upregulation of previously defined B. bigemina sexual stage marker genes, ccp2 and 3, and their respective protein expression in TCEP-induced B. bigemina cultures. Next, transcription analysis of in vitro TCEP-induced B. bigemina culture based on an in silico derived list of homologs of Plasmodium falciparum gamete-specific genes demonstrated differential expression of the gene BBBOND_0204030 in induced cells. Further examination of ex vivo infected ticks demonstrated that BBBOND_0204030 is transcribed by multiple stages of B. bigemina during parasite development in tick midgut, ovary and hemolymph. Interestingly, ex vivo results confirmed our in vitro observation that blood stages of B. bigemina do not express BBBOND_0204030 and validated the in vitro system of inducing sexual stages. CONCLUSIONS: Herein we describe the identification of a B. bigemina gene transcribed exclusively by parasites infecting ticks using a novel method of inducing B. bigemina sexual stages in vitro. We propose that this gene can be used as a marker for parasite development within the tick vector. Together, these tools will facilitate our understanding of parasite-tick interactions, the identification of novel vaccine targets and, consequently, the development of additional strategies to control bovine babesiosis.


Asunto(s)
Babesia/genética , ADN Protozoario/genética , Expresión Génica , Estadios del Ciclo de Vida/genética , Metiltransferasas/genética , Rhipicephalus/parasitología , Animales , Babesia/efectos de los fármacos , Babesia/enzimología , Babesia/crecimiento & desarrollo , Babesiosis/parasitología , Biomarcadores/análisis , Bovinos , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/parasitología , Simulación por Computador , Técnicas In Vitro , Metiltransferasas/aislamiento & purificación , Fosfinas/farmacología , Reproducción/genética
12.
Parasitol Res ; 117(4): 1271-1276, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29516215

RESUMEN

Tropical theileriosis is a serious animal disease transmitted by tick vectors. The agents of theileriosis are obligate intracellular parasites that cause mild to severe disease in the mammalian host. Tropical theileriosis has been recognized as a burden to the development of the dairy industry in Sudan and causes major economic losses. However, knowledge about the distribution of Theileria spp. in Sudan and the extent of sequence variation within the 18S rRNA gene is currently unknown. The aim of this study was to determine the diversity of Theileria spp. using 18S rRNA-based PCR to detect parasites in cattle followed by cloning and sequencing. We observed an overall prevalence rate of 63% hemoparasite infection in cattle from Sennar state. A subset of samples was used for cloning and sequencing of the 18S rRNA gene. Nineteen of 44 animals were co-infected with more than one species of Theilera. Phylogenetic analysis revealed three Theileria spp. that were predominant in cattle including pathogenic T. annulata and apathogenic T. velifera and T. mutans. The present study provides information regarding the prevalence of theileriosis in Sudan and will help to design strategies to control it. Additionally, more study is needed to determine tick vector competence and degree of coinfection with multiple Theileria spp. in Sudan. This represents the first molecular phylogeny report to identify Theileria spp. in cattle from Sudan.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Bovinos/parasitología , Theileria/clasificación , Theileria/genética , Theileriosis/epidemiología , Enfermedades por Picaduras de Garrapatas/epidemiología , Animales , Enfermedades de los Bovinos/parasitología , Variación Genética , Filogenia , ARN Ribosómico 18S/genética , Sudán/epidemiología , Theileria/aislamiento & purificación , Theileriosis/parasitología , Enfermedades por Picaduras de Garrapatas/parasitología
13.
PLoS Negl Trop Dis ; 11(10): e0005965, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28985216

RESUMEN

Babesia bovis, is a tick borne apicomplexan parasite responsible for important cattle losses globally. Babesia parasites have a complex life cycle including asexual replication in the mammalian host and sexual reproduction in the tick vector. Novel control strategies aimed at limiting transmission of the parasite are needed, but transmission blocking vaccine candidates remain undefined. Expression of HAP2 has been recognized as critical for the fertilization of parasites in the Babesia-related Plasmodium, and is a leading candidate for a transmission blocking vaccine against malaria. Hereby we identified the B. bovis hap2 gene and demonstrated that it is widely conserved and differentially transcribed during development within the tick midgut, but not by blood stage parasites. The hap2 gene was disrupted by transfecting B. bovis with a plasmid containing the flanking regions of the hap2 gene and the GPF-BSD gene under the control of the ef-1α-B promoter. Comparison of in vitro growth between a hap2-KO B. bovis clonal line and its parental wild type strain showed that HAP2 is not required for the development of B. bovis in erythrocytes. However, xanthurenic acid-in vitro induction experiments of sexual stages of parasites recovered after tick transmission resulted in surface expression of HAP2 exclusively in sexual stage induced parasites. In addition, hap2-KO parasites were not able to develop such sexual stages as defined both by morphology and by expression of the B. bovis sexual marker genes 6-Cys A and B. Together, the data strongly suggests that tick midgut stage differential expression of hap2 is associated with the development of B. bovis sexual forms. Overall these studies are consistent with a role of HAP2 in tick stages of the parasite and suggest that HAP2 is a potential candidate for a transmission blocking vaccine against bovine babesiosis.


Asunto(s)
Vectores Arácnidos/parasitología , Babesia bovis/genética , Babesia bovis/fisiología , Genes Protozoarios , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Rhipicephalus/parasitología , Animales , Babesia bovis/efectos de los fármacos , Babesia bovis/crecimiento & desarrollo , Bovinos/parasitología , Eritrocitos/parasitología , Femenino , Estadios del Ciclo de Vida , Factor 1 de Elongación Peptídica/genética , Regiones Promotoras Genéticas , Reproducción/efectos de los fármacos , Reproducción/genética , Xanturenatos/farmacología
14.
Parasit Vectors ; 8: 618, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26626727

RESUMEN

BACKGROUND: Ticks are blood-feeding arthropods that can affect human and animal health both directly by blood-feeding and indirectly by transmitting pathogens. The cattle tick Rhipicephalus (Boophilus) microplus is one of the most economically important ectoparasites of bovines worldwide and it is responsible for the transmission of the protozoan Babesia bovis, the etiological agent of bovine babesiosis. Aquaporins (AQPs) are water channel proteins implicated in physiological mechanisms of osmoregulation. Members of the AQP family are critical for blood-feeding arthropods considering the extreme osmoregulatory changes that occur during their feeding. We investigated the pattern of expression of a newly identified AQP2 gene of R. microplus (RmAQP2) in different tick tissues and stages. We also examined in vivo the biological implications of silencing expression of RmAQP2 silencing during tick feeding on either uninfected or B. bovis-infected cattle. METHODS: In silico gene analyses were performed by multiple alignments of amino acid sequences and topology prediction. Levels of RmAQP2 transcripts in different tick tissues and stages were analyzed by reverse transcriptase quantitative PCR. Patterns of expression of RmAQP2 protein were investigated by immunoblots. Gene silencing was performed by RNA interference and in vivo functional analyses carried out by feeding ticks on either uninfected or B. bovis-infected cattle. RESULTS: RmAQP2 transcripts were found in unfed larvae, engorged nymphs, and salivary glands and guts of partially engorged females; however, of all tick tissues and stages examined, RmAQP2 protein was found only in salivary glands of partially engorged females. RmAQP2 silencing significantly reduced tick fitness and completely abrogated protein expression. The effect of RmAQP2 silencing on fitness was more pronounced in females fed on a B. bovis-infected calf than in ticks fed on an uninfected calf and none of their larval progeny survived. CONCLUSIONS: Collectively, considering the gene expression and tick fitness data, we conclude that RmAQP2 is critical for tick blood feeding and may be a suitable candidate target for the development of novel strategies to control R. microplus and tick-borne parasites.


Asunto(s)
Acuaporina 2/genética , Acuaporina 2/metabolismo , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Rhipicephalus/fisiología , Animales , Acuaporina 2/antagonistas & inhibidores , Proteínas de Artrópodos/antagonistas & inhibidores , Babesiosis , Bovinos , Enfermedades de los Bovinos , Conducta Alimentaria , Perfilación de la Expresión Génica , Silenciador del Gen , Datos de Secuencia Molecular , Rhipicephalus/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA