Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Lab Anim (NY) ; 53(5): 117-120, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38637688

RESUMEN

Many research groups explore the regulation of hibernation or compare the physiology of heterothermic mammals between the torpid and aroused, euthermic states. Current methods for monitoring torpor (for example, infrared cameras, body temperature or heart-rate telemetry, and motion sensing) are costly, require specialized techniques, and can be invasive. Here we present an alternate method for determining torpor-bout duration that is cost-effective, noninvasive and accurate: paper towel shredding. In the winter, euthermic thirteen-lined ground squirrels will shred paper towels placed in the cage, but torpid animals will not. The presence of a shredded paper towel, indicating an arousal from torpor, is easily evaluated during routine daily monitoring. In 12 animals over 52 days, this simple technique detected 59 arousals with 100% accuracy when compared with the body temperature telemetry of the same animals. Moreover, this novel method avoids some of the drawbacks of other cheap monitoring systems such as the sawdust technique.


Asunto(s)
Hibernación , Sciuridae , Animales , Sciuridae/fisiología , Hibernación/fisiología , Nivel de Alerta/fisiología , Telemetría/métodos , Telemetría/veterinaria , Temperatura Corporal , Masculino , Papel , Vivienda para Animales
2.
J Comp Physiol B ; 194(1): 81-93, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37979043

RESUMEN

Across many taxa, the complexes of the electron transport system associate with each other within the inner mitochondrial membrane to form supercomplexes (SCs). These SCs are thought to confer some selective advantage, such as increasing cellular respiratory capacity or decreasing the production of damaging reactive oxygen species (ROS). In this study, we investigate the relationship between supercomplex abundance and performance of liver mitochondria isolated from rats that do not hibernate and hibernating ground squirrels in which metabolism fluctuates substantially. We quantified the abundance of SCs (respirasomes (SCs containing CI, CIII, and CIV) or SCs containing CIII and CIV) and examined the relationship with state 3 (OXPHOS) and state 4 (LEAK) respiration rate, as well as net ROS production. We found that, in rats, state 3 and 4 respiration rate correlated negatively with respirasome abundance, but positively with CIII/CIV SC abundance. Despite the greater range of respiration rates in different hibernation stages, these relationships were similar in ground squirrels. This is, to our knowledge, the first report of differential effects of supercomplex types on mitochondrial respiration and ROS production.


Asunto(s)
Respiración , Sciuridae , Ratas , Animales , Transporte de Electrón , Especies Reactivas de Oxígeno/metabolismo , Sciuridae/metabolismo , Oxígeno
3.
Am J Physiol Regul Integr Comp Physiol ; 323(1): R28-R42, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35470710

RESUMEN

Complexes of the electron transport system can associate with each other to form supercomplexes (SCs) within mitochondrial membranes, perhaps increasing respiratory capacity or reducing reactive oxygen species production. In this study, we determined the abundance, composition, and stability of SCs in a mammalian hibernator, in which both whole animal and mitochondrial metabolism change greatly throughout winter. We isolated mitochondria from thirteen-lined ground squirrels (Ictidomys tridecemlineatus) in different hibernation states, as well as from rats (Rattus norvegicus). We extracted mitochondrial proteins using two nonionic detergents of different strengths and quantified SC abundance using two-dimensional gel electrophoresis and immunoblotting. Rat heart and liver had fewer SCs than ground squirrels. Within ground squirrels, SCs are dynamic, changing among hibernation states within a matter of hours. In brown adipose tissue, Complex III composition in different SCs differed between the torpid and interbout euthermic phase of a hibernation bout. In heart and liver, complex III composition changed between winter and summer. We also evaluated the stability of liver SCs using a stronger detergent and found that the stability of SCs differed; torpor SCs were more stable than the SCs of ground squirrels in other states and rats. This study is the first report of SC changes during hibernation and the first to demonstrate their dynamics on a short timescale.


Asunto(s)
Hibernación , Letargo , Animales , Transporte de Electrón , Complejo III de Transporte de Electrones/metabolismo , Hibernación/fisiología , Ratas , Sciuridae/fisiología , Letargo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA