Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Forensic Sci Int Genet ; 72: 103087, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38996566

RESUMEN

Species identification following shark-related incidents is critical for effective incident management and for collecting data to inform shark-bite mitigation strategies. Witness statements are not always reliable, and species identification is often ambiguous or missing. Alternative methods for species identification include morphological assessments of bite marks, analysis of collected teeth at the scene of the incident, and genetic approaches. However, access to appropriate collection media and robust genetic assays have limited the use of genetic technologies. Here, we present a case study that facilitated a unique opportunity to compare the effectiveness of medical gauze readily available in first-aid kits, and forensic-grade swabs in collecting genetic material for shark-species identification. Sterile medical gauze and forensic-grade swabs were used to collect transfer DNA from the bite margins on a bitten surf ski which were compared to a piece of shark tissue embedded along the bite margin. Witness accounts and the characteristics of the bite mark impressions inferred the involvement of a Carcharodon carcharias (white shark). The morphology of a tooth found on the boat that picked up the surf ski, however, suggested it belonged to an Orectolobus spp. (wobbegong). Genetic analysis of DNA transferred from the shark to the surf ski included the application of a broad-target nested PCR assay followed by Sanger sequencing, with white shark contribution to the 'total sample DNA' determined with a species-specific qPCR assay. The results of the genetic analyses were congruent between sampling methods with respect to species identification and the level of activity inferred by the donor-specific DNA contribution. These data also supported the inferences drawn from the bite mark morphology. DNA from the recovered tooth was PCR amplified with a wobbegong-specific primer pair designed for this study to corroborate the tooth's morphological identification. Following the confirmation of gauze used for sampling in the case study event, two additional isolated incidents occurred and were sampled in situ using gauze, as typically found in a first-aid kit, by external personnel. DNA extracted from these gauze samples resulted in the identification of a white shark as the donor of the DNA collected from the bite marks in both instances. This study, involving three incidents separated by time and location, represents the seminal application of gauze as a sampling media after critical human-shark interactions and strongly supports the practical implementation of these methods in the field.

2.
Sci Rep ; 14(1): 16307, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009626

RESUMEN

The frequency of unprovoked shark bites is increasing worldwide, leading to a growing pressure for mitigation measures to reduce shark-bite risk while maintaining conservation objectives. Personal shark deterrents are a promising and non-lethal strategy that can protect ocean users, but few have been independently and scientifically tested. In Australia, bull (Carcharhinus leucas), tiger (Galeocerdo cuvier), and white sharks (Carcharodon carcharias) are responsible for the highest number of bites and fatalities. We tested the effects of two electric deterrents (Ocean Guardian's Freedom+ Surf and Freedom7) on the behaviour of these three species. The surf product reduced the probability of bites by 54% across all three species. The diving product had a similar effect on tiger shark bites (69% reduction) but did not reduce the frequency of bites from white sharks (1% increase), likely because the electrodes were placed further away from the bait. Electric deterrents also increased the time for bites to occur, and frequency of reactions and passes for all species tested. Our findings reveal that both Freedom+ Surf and Freedom7 electric deterrents affect shark behaviour and can reduce shark-bite risk for water users, but neither product eliminated the risk of shark bites entirely. The increasing number of studies showing the ability of personal electric deterrents to reduce shark-bite risk highlights personal protection as an effective and important part of the toolbox of shark-bite mitigation measures.


Asunto(s)
Mordeduras y Picaduras , Tiburones , Animales , Tiburones/fisiología , Mordeduras y Picaduras/prevención & control , Australia , Conservación de los Recursos Naturales/métodos , Humanos , Electricidad
3.
J Fish Biol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812115

RESUMEN

Predators display rhythms in behavior and habitat use, often with the goal of maximizing foraging success. The underlying mechanisms behind these rhythms are generally linked to abiotic conditions related to diel, lunar, or seasonal cycles. To understand their effects on the space use, activity, and swimming depth of gray reef sharks (Carcharhinus amblyrhynchos), we tagged 38 individuals with depth and accelerometer sensors in a French Polynesian atoll channel exposed to strong tidal flow, and monitored them over a year. C. amblyrhynchos used a larger space during nighttime and were more active at night and during outgoing currents. Shark activity also peaked during the full and new moons. The swimming depth of sharks was mostly influenced by diel cycles, with sharks swimming deeper during the day compared to nighttime. The dynamic energyscape may promote the emergence of discrete behavioral strategies in reef sharks that use the south channel of Fakarava for resting and foraging purposes. Turbulence imposed by outgoing tides induces additional foraging cost on sharks, shifting their hunting areas to the southern part of the channel, where turbulence is less pronounced. Understanding when and where sharks are active and foraging is important for our understanding of predator-prey dynamics and ecosystem dynamics. This study highlights how abiotic rhythms in a highly dynamic environment likely generate spatiotemporal heterogeneity in the distribution of predation pressure.

4.
Mov Ecol ; 12(1): 31, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654348

RESUMEN

BACKGROUND: Acoustic telemetry has become a fundamental tool to monitor the movement of aquatic species. Advances in technology, in particular the development of batteries with lives of > 10 years, have increased our ability to track the long-term movement patterns of many species. However, logistics and financial constraints often dictate the locations and deployment duration of acoustic receivers. Consequently, there is often a compromise between optimal array design and affordability. Such constraints can hinder the ability to track marine animals over large spatial and temporal scales. Continental-scale receiver networks have increased the ability to study large-scale movements, but significant gaps in coverage often remain. METHODS: Since 2007, the Integrated Marine Observing System's Animal Tracking Facility (IMOS ATF) has maintained permanent receiver installations on the eastern Australian seaboard. In this study, we present the recent enhancement of the IMOS ATF acoustic tracking infrastructure in Queensland to collect data on large-scale movements of marine species in the northeast extent of the national array. Securing a relatively small initial investment for expanding receiver deployment and tagging activities in Queensland served as a catalyst, bringing together a diverse group of stakeholders (research institutes, universities, government departments, port corporations, industries, Indigenous ranger groups and tourism operators) to create an extensive collaborative network that could sustain the extended receiver coverage into the future. To fill gaps between existing installations and maximise the monitoring footprint, the new initiative has an atypical design, deploying many single receivers spread across 2,100 km of Queensland waters. RESULTS: The approach revealed previously unknown broad-scale movements for some species and highlights that clusters of receivers are not always required to enhance data collection. However, array designs using predominantly single receiver deployments are more vulnerable to data gaps when receivers are lost or fail, and therefore "redundancy" is a critical consideration when designing this type of array. CONCLUSION: Initial results suggest that our array enhancement, if sustained over many years, will uncover a range of previously unknown movements that will assist in addressing ecological, fisheries, and conservation questions for multiple species.

5.
Science ; 383(6687): 1135-1141, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38452078

RESUMEN

The deep ocean is the last natural biodiversity refuge from the reach of human activities. Deepwater sharks and rays are among the most sensitive marine vertebrates to overexploitation. One-third of threatened deepwater sharks are targeted, and half the species targeted for the international liver-oil trade are threatened with extinction. Steep population declines cannot be easily reversed owing to long generation lengths, low recovery potentials, and the near absence of management. Depth and spatial limits to fishing activity could improve conservation when implemented alongside catch regulations, bycatch mitigation, and international trade regulation. Deepwater sharks and rays require immediate trade and fishing regulations to prevent irreversible defaunation and promote recovery of this threatened megafauna group.


Asunto(s)
Conservación de los Recursos Naturales , Extinción Biológica , Caza , Tiburones , Rajidae , Animales , Humanos , Internacionalidad , Carne , Aceites de Pescado , Biodiversidad , Océanos y Mares , Riesgo
6.
Sci Data ; 11(1): 143, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291027

RESUMEN

Data on the movement and space use of aquatic animals are crucial to understand complex interactions among biotic and abiotic components of ecosystems and facilitate effective conservation and management. Acoustic telemetry (AT) is a leading method for studying the movement ecology of aquatic animals worldwide, yet the ability to efficiently access study information from AT research is currently lacking, limiting advancements in its application. Here, we describe TrackdAT, an open-source metadata dataset where AT research parameters are catalogued to provide scientists, managers, and other stakeholders with the ability to efficiently identify and evaluate existing peer-reviewed research. Extracted metadata encompasses key information about biological and technical aspects of research, providing a comprehensive summary of existing AT research. TrackdAT currently hosts information from 2,412 journal articles published from 1969 to 2022 spanning 614 species and 380,289 tagged animals. TrackdAT has the potential to enable regional and global mobilization of knowledge, increased opportunities for collaboration, greater stakeholder engagement, and optimization of future ecological research.


Asunto(s)
Ecosistema , Metadatos , Telemetría , Animales , Acústica , Movimiento , Telemetría/métodos
7.
Mar Pollut Bull ; 198: 115855, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043202

RESUMEN

Shark-human interactions are some of the most pervasive human-wildlife conflicts, and their frequencies are increasing globally. New South Wales (Australia) was the first to implement a broad-scale program of shark-bite mitigation in 1937 using shark nets, which expanded in the late 2010s to include non-lethal measures. Using 196 unprovoked shark-human interactions recorded in New South Wales since 1900, we show that bites shifted from being predominantly on swimmers to 79 % on surfers by the 1980s and increased 2-4-fold. We could not detect differences in the interaction rate at netted versus non-netted beaches since the 2000s, partly because of low incidence and high variance. Although shark-human interactions continued to occur at beaches with tagged-shark listening stations, there were no interactions while SMART drumlines and/or drones were deployed. Our effect-size analyses show that a small increase in the difference between mitigated and non-mitigated beaches could indicate reductions in shark-human interactions. Area-based protection alone is insufficient to reduce shark-human interactions, so we propose a new, globally transferable approach to minimise risk of shark bite more effectively.


Asunto(s)
Mordeduras y Picaduras , Tiburones , Animales , Humanos , Incidencia , Australia , Mordeduras y Picaduras/epidemiología , Animales Salvajes
8.
Artículo en Inglés | MEDLINE | ID: mdl-37348808

RESUMEN

Although pervasive, the effects of climate change vary regionally, possibly resulting in differential behavioral, physiological, and/or phenotypic responses among populations within broadly distributed species. Juvenile Port Jackson sharks (Heterodontus portusjacksoni) from eastern and southern Australia were reared at their current (17.6 °C Adelaide, South Australia [SA]; 20.6 °C Jervis Bay, New South Wales [NSW]) or projected end-of-century (EOC) temperatures (20.6 °C Adelaide, SA; 23.6 °C Jervis Bay, NSW) and assessed for morphological features of skeletal muscle tissue. Nearly all skeletal muscle properties including cellularity, fiber size, myonuclear domain, and satellite cell density did not differ between locations and thermal regimes. However, capillary density was significantly influenced by thermal treatment, where Adelaide sharks raised at current temperatures had a lower capillarity than Jervis Bay sharks raised at ambient or projected EOC temperatures. This may indicate higher metabolic costs at elevated temperatures. However, our results suggest that regardless of the population, juvenile Port Jackson sharks may have limited acclimatory potential to alter muscle metabolic features under a temperature increase, which may make this species vulnerable to climate change.


Asunto(s)
Tiburones , Animales , Tiburones/fisiología , Temperatura , Músculo Esquelético/metabolismo
9.
Am Nat ; 201(4): 586-602, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958006

RESUMEN

AbstractUnifying models have shown that the amount of space used by animals (e.g., activity space, home range) scales allometrically with body mass for terrestrial taxa; however, such relationships are far less clear for marine species. We compiled movement data from 1,596 individuals across 79 taxa collected using a continental passive acoustic telemetry network of acoustic receivers to assess allometric scaling of activity space. We found that ectothermic marine taxa do exhibit allometric scaling for activity space, with an overall scaling exponent of 0.64. However, body mass alone explained only 35% of the variation, with the remaining variation best explained by trophic position for teleosts and latitude for sharks, rays, and marine reptiles. Taxon-specific allometric relationships highlighted weaker scaling exponents among teleost fish species (0.07) than sharks (0.96), rays (0.55), and marine reptiles (0.57). The allometric scaling relationship and scaling exponents for the marine taxonomic groups examined were lower than those reported from studies that had collated both marine and terrestrial species data derived using various tracking methods. We propose that these disparities arise because previous work integrated summarized data across many studies that used differing methods for collecting and quantifying activity space, introducing considerable uncertainty into slope estimates. Our findings highlight the benefit of using large-scale, coordinated animal biotelemetry networks to address cross-taxa evolutionary and ecological questions.


Asunto(s)
Organismos Acuáticos , Peces , Animales , Fenómenos de Retorno al Lugar Habitual
10.
Ecology ; 104(1): e3888, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36208280

RESUMEN

Lipid and fatty acid datasets are commonly used to assess the nutritional composition of organisms, trophic ecology, and ecosystem dynamics. Lipids and their fatty acid constituents are essential nutrients to all forms of life because they contribute to biological processes such as energy flow and metabolism. Assessment of total lipids in tissues of organisms provides information on energy allocation and life-history strategies and can be an indicator of nutritional condition. The analysis of an organism's fatty acids is a widely used technique for assessing nutrient and energy transfer, and dietary interactions in food webs. Although there have been many published regional studies that assessed lipid and fatty acid compositions, many only report the mean values of the most abundant fatty acids. There are limited individual records available for wider use in intercomparison or macro-scale studies. This dataset consists of 4856 records of individual and pooled samples of at least 470 different marine consumer species sampled from tropical, temperate, and polar regions around Australia and in the Southern, Indian, and Pacific Oceans from 1989 to 2018. This includes data for a diverse range of taxa (zooplankton, fish, cephalopods, chondrichthyans, and marine mammals), size ranges (0.02 cm to ~13 m), and that cover a broad range of trophic positions (2.0-4.6). When known, we provide a record of species name, date of sampling, sampling location, body size, relative (%) measurements of tissue-specific total lipid content and abundant fatty acids, and absolute content (mg 100 g-1 tissue) of eicosapentaenoic acid (EPA, 20:5n3) and docosahexaenoic acid (DHA, 22:6n3) as important long-chain (≥C20 ) polyunsaturated omega-3 fatty acids. These records form a solid basis for comparative studies that will facilitate a broad understanding of the spatial and temporal distribution of marine lipids globally. The dataset also provides reference data for future dietary assessments of marine predators and model assessments of potential impacts of climate change on the availability of marine lipids and fatty acids. There are 480 data records within our data file for which the providers have requested that permission for reuse be granted, with the likely condition that they are included as a coauthor on the reporting of the dataset. Records with this condition are indicated by a "yes" under "Conditions_of_data_use" in Data S1: Marineconsumer_FAdata.csv (see Table 2 in Metadata S1 for more details). For all other data records marked as "No" under "Conditions_of_data_use," there are no copyright restrictions for research and/or teaching purposes. We request that users acknowledge use of the data in publications, research proposals, websites, and other outlets via formal citation of this work and original data sources as applicable.


Asunto(s)
Ecosistema , Ácidos Grasos , Animales , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Cadena Alimentaria , Peces , Zooplancton , Mamíferos
11.
Viruses ; 14(9)2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36146775

RESUMEN

The epidermal microbiome is a critical element of marine organismal immunity, but the epidermal virome of marine organisms remains largely unexplored. The epidermis of sharks represents a unique viromic ecosystem. Sharks secrete a thin layer of mucus which harbors a diverse microbiome, while their hydrodynamic dermal denticles simultaneously repel environmental microbes. Here, we sampled the virome from the epidermis of three shark species in the family Carcharhinidae: the genetically and morphologically similar Carcharhinus obscurus (n = 6) and Carcharhinus galapagensis (n = 10) and the outgroup Galeocerdo cuvier (n = 15). Virome taxonomy was characterized using shotgun metagenomics and compared with a suite of multivariate analyses. All three sharks retain species-specific but highly similar epidermal viromes dominated by uncharacterized bacteriophages which vary slightly in proportional abundance within and among shark species. Intraspecific variation was lower among C. galapagensis than among C. obscurus and G. cuvier. Using both the annotated and unannotated reads, we were able to determine that the Carcharhinus galapagensis viromes were more similar to that of G. cuvier than they were to that of C. obscurus, suggesting that behavioral niche may be a more prominent driver of virome than host phylogeny.


Asunto(s)
Bacteriófagos , Buceo , Tiburones , Viroma , Animales , Bacteriófagos/genética , Ecosistema , Epidermis , Metagenómica
12.
Sci Adv ; 8(33): eabo1754, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35984887

RESUMEN

Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.

13.
Sci Data ; 9(1): 378, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794151

RESUMEN

We describe the Australian Shark-Incident Database, formerly known as the Australian Shark-Attack File, which contains comprehensive reports of 1,196 shark bites that have occurred in Australia over 231 years (1791-2022). Data were collated by the Taronga Conservation Society Australia using purpose-designed questionnaires provided to shark-bite victims or witnesses, media reports, and information provided by the department responsible for fisheries in each Australian state (including the Northern Territory). The dataset includes provoked and unprovoked bites from fresh, brackish, and marine waters in Australia. Data span 22 suspected shark species. This dataset will be publicly available, and can be used by analysts to decipher environmental, biological, and social patterns of shark bites in Australia. The information will aid scientists, conservationists, authorities, and members of the public to make informed decisions when implementing or selecting mitigation measures.


Asunto(s)
Mordeduras y Picaduras , Tiburones , Animales , Mordeduras y Picaduras/epidemiología , Bases de Datos Factuales , Explotaciones Pesqueras , Humanos , Northern Territory
14.
Sci Rep ; 12(1): 6582, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35449439

RESUMEN

Over the last century, many shark populations have declined, primarily due to overexploitation in commercial, artisanal and recreational fisheries. In addition, in some locations the use of shark control programs also has had an impact on shark numbers. Still, there is a general perception that populations of large ocean predators cover wide areas and therefore their diversity is less susceptible to local anthropogenic disturbance. Here we report on temporal genomic analyses of tiger shark (Galeocerdo cuvier) DNA samples that were collected from eastern Australia over the past century. Using Single Nucleotide Polymorphism (SNP) loci, we documented a significant change in genetic composition of tiger sharks born between ~1939 and 2015. The change was most likely due to a shift over time in the relative contribution of two well-differentiated, but hitherto cryptic populations. Our data strongly indicate a dramatic shift in the relative contribution of these two populations to the overall tiger shark abundance on the east coast of Australia, possibly associated with differences in direct or indirect exploitation rates.


Asunto(s)
Tiburones , Animales , Australia , Explotaciones Pesqueras , Genómica , Estudios Retrospectivos , Tiburones/genética
15.
J Hazard Mater ; 425: 127956, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-34986563

RESUMEN

Large marine predators exhibit high concentrations of mercury (Hg) as neurotoxic methylmercury, and the potential impacts of global change on Hg contamination in these species remain highly debated. Current contaminant model predictions do not account for intraspecific variability in Hg exposure and may fail to reflect the diversity of future Hg levels among conspecific populations or individuals, especially for top predators displaying a wide range of ecological traits. Here, we used Hg isotopic compositions to show that Hg exposure sources varied significantly between and within three populations of white sharks (Carcharodon carcharias) with contrasting ecology: the north-eastern Pacific, eastern Australasian, and south-western Australasian populations. Through Δ200Hg signatures in shark tissues, we found that atmospheric Hg deposition pathways to the marine environment differed between coastal and offshore habitats. Discrepancies in δ202Hg and Δ199Hg signatures among white sharks provided evidence for intraspecific exposure to distinct sources of marine methylmercury, attributed to population and ontogenetic shifts in foraging habitat and prey composition. We finally observed a strong divergence in Hg accumulation rates between populations, leading to three times higher Hg concentrations in large Australasian sharks compared to north-eastern Pacific sharks, and likely due to different trophic strategies adopted by adult sharks across populations. This study illustrates the variety of Hg exposure sources and bioaccumulation patterns that can be found within a single species and suggests that intraspecific variability needs to be considered when assessing future trajectories of Hg levels in marine predators.


Asunto(s)
Mercurio , Tiburones , Animales , Bioacumulación , Ecosistema , Peces , Cadena Alimentaria , Humanos , Alimentos Marinos
16.
Conserv Biol ; 36(2): e13807, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34312893

RESUMEN

Marine fisheries in coastal ecosystems in many areas of the world have historically removed large-bodied individuals, potentially impairing ecosystem functioning and the long-term sustainability of fish populations. Reporting on size-based indicators that link to food-web structure can contribute to ecosystem-based management, but the application of these indicators over large (cross-ecosystem) geographical scales has been limited to either fisheries-dependent catch data or diver-based methods restricted to shallow waters (<20 m) that can misrepresent the abundance of large-bodied fished species. We obtained data on the body-size structure of 82 recreationally or commercially targeted marine demersal teleosts from 2904 deployments of baited remote underwater stereo-video (stereo-BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e., a proxy of human impacts) were the strongest predictors of the probability of occurrence of large fishes and the abundance of fishes above the minimum legal size of capture. No-take marine reserves had a positive effect on the abundance of fishes above legal size, although the effect varied across species groups. In contrast, sublegal fishes were best predicted by gradients in sea surface temperature (mean and variance). In areas of low human impact, large fishes were about three times more likely to be encountered and fishes of legal size were approximately five times more abundant. For conspicuous species groups with contrasting habitat, environmental, and biogeographic affinities, abundance of legal-size fishes typically declined as human impact increased. Our large-scale quantitative analyses highlight the combined importance of seascape complexity, regions with low human footprint, and no-take marine reserves in protecting large-bodied fishes across a broad range of species and ecosystem configurations.


Las pesquerías marinas de los ecosistemas costeros en muchas áreas del mundo históricamente han removido a individuos de gran tamaño, potencialmente perjudicando el funcionamiento ambiental y la sostenibilidad a largo plazo de las poblaciones de peces. Los reportes sobre los indicadores basados en el tamaño que se vinculan con la estructura de la red alimenticia pueden contribuir al manejo basado en el ecosistema, aunque la aplicación de estos indicadores a grandes (inter-ecosistemas) escalas geográficas ha estado limitada a datos de captura dependientes de las pesquerías o métodos basados en el buceo restringidos a aguas someras (<20 m), lo cual puede representar erróneamente la abundancia de peces de gran tamaño capturados para la pesca. Obtuvimos los datos de la estructura del tamaño corporal de 82 teleósteos marinos demersales focalizados por razones recreativas o comerciales tomados de 2,904 despliegues de video estéreo subacuático remoto con cebo (stereo-BRUV, en inglés). El muestreo se realizó hasta los 50 metros de profundidad y abarcó aproximadamente 10,000 km del talud continental de Australia. El relieve marino, la profundidad del agua y la gravedad humana (es decir, un indicador de los impactos humanos) fueron los pronosticadores más sólidos de la probabilidad de incidencia de los peces de gran tamaño y de la abundancia de peces por encima del tamaño legal mínimo de captura. Las reservas marinas de protección total tienen un efecto positivo sobre la abundancia de los peces que están por encima del tamaño legal, aunque el efecto varió según el grupo de especies. Como contraste, los peces de tamaño sublegal fueron pronosticados de mejor manera usando gradientes de la temperatura de la superficie marina (media y varianza). En las áreas con un impacto humano reducido, los peces de gran tamaño corporal tenían hasta tres veces mayor probabilidad de aparecer y los peces de tamaño legal eran aproximadamente cinco veces más abundantes. Para los grupos de especies conspicuas con afinidades contrastantes de hábitat, ambiente y biogeografía, la abundancia de peces de tamaño legal normalmente declinó conforme aumentó el impacto humano. Nuestros análisis cuantitativos a gran escala resaltan la importancia conjunta que tienen la complejidad marina, las regiones con una huella humana reducida y las reservas marinas de protección total para la protección de los peces de gran tamaño corporal en una extensa gama de especies y configuraciones ecosistémicas. Efectos de la Huella Humana y los Factores Biofísicos sobre la Estructura del Tamaño Corporal de Especies Marinas Capturadas para la Pesca.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Australia , Tamaño Corporal , Explotaciones Pesqueras , Peces , Humanos
17.
J R Soc Interface ; 18(183): 20210533, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34699727

RESUMEN

Shark bites on humans are rare but are sufficiently frequent to generate substantial public concern, which typically leads to measures to reduce their frequency. Unfortunately, we understand little about why sharks bite humans. One theory for bites occurring at the surface, e.g. on surfers, is that of mistaken identity, whereby sharks mistake humans for their typical prey (pinnipeds in the case of white sharks). This study tests the mistaken identity theory by comparing video footage of pinnipeds, humans swimming and humans paddling surfboards, from the perspective of a white shark viewing these objects from below. Videos were processed to reflect how a shark's retina would detect the visual motion and shape cues. Motion cues of humans swimming, humans paddling surfboards and pinnipeds swimming did not differ significantly. The shape of paddled surfboards and human swimmers was also similar to that of pinnipeds with their flippers abducted. The difference in shape between pinnipeds with abducted versus adducted flippers was bigger than between pinnipeds with flippers abducted and surfboards or human swimmers. From the perspective of a white shark, therefore, neither visual motion nor shape cues allow an unequivocal visual distinction between pinnipeds and humans, supporting the mistaken identity theory behind some bites.


Asunto(s)
Mordeduras y Picaduras , Tiburones , Animales , Humanos , Natación
18.
Biol Conserv ; 256: 108995, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34580542

RESUMEN

COVID-19 restrictions have led to an unprecedented global hiatus in anthropogenic activities, providing a unique opportunity to assess human impact on biological systems. Here, we describe how a national network of acoustic tracking receivers can be leveraged to assess the effects of human activity on animal movement and space use during such global disruptions. We outline variation in restrictions on human activity across Australian states and describe four mechanisms affecting human interactions with the marine environment: 1) reduction in economy and trade changing shipping traffic; 2) changes in export markets affecting commercial fisheries; 3) alterations in recreational activities; and 4) decline in tourism. We develop a roadmap for the analysis of acoustic tracking data across various scales using Australia's national Integrated Marine Observing System (IMOS) Animal Tracking Facility as a case study. We illustrate the benefit of sustained observing systems and monitoring programs by assessing how a 51-day break in white shark (Carcharodon carcharias) cage-diving tourism due to COVID-19 restrictions affected the behaviour and space use of two resident species. This cessation of tourism activities represents the longest break since cage-diving vessels started day trips in this area in 2007. Long-term monitoring of the local environment reveals that the activity space of yellowtail kingfish (Seriola lalandi) was reduced when cage-diving boats were absent compared to periods following standard tourism operations. However, white shark residency and movements were not affected. Our roadmap is globally applicable and will assist researchers in designing studies to assess how anthropogenic activities can impact animal movement and distributions during regional, short-term through to major, unexpected disruptions like the COVID-19 pandemic.

19.
J Forensic Sci ; 66(6): 2438-2443, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34286850

RESUMEN

Identifying the species involved in shark bite incidents is an ongoing challenge but is important to mitigate risk. We developed a sampling protocol to identify shark species from DNA transferred to inanimate objects during bite incidents. To develop and refine the technique, we swabbed shark bite impressions on surfboards and wetsuit neoprene collected under semicontrolled conditions. Methods were tested experimentally and then successfully used to identify the species involved in a real-world shark bite incident. Thirty-two of 33 bite impressions yielded sufficient DNA sequences for species identification, producing barcodes from five test species, including dusky, Galapagos, bull, tiger, and white shark. The latter three species collectively account for a majority of shark bites worldwide. Our method successfully identified the species (Galeocerdo cuvier) responsible for a fatal shark bite on December 8th, 2020 on the island of Maui, from swab samples collected from the victim's surfboard 49 h after the bite incident. Our experimental results demonstrate that shark species can be accurately identified from transfer DNA recovered from bite impressions on surfboards and wetsuit neoprene. The successful use of our method in the real-world incident shows great potential for the practicality of this tool. We recommend DNA swabbing as a routine part of the forensic analysis of shark bites to help identify the species involved in human-shark interactions.


Asunto(s)
Mordeduras y Picaduras , Código de Barras del ADN Taxonómico/métodos , ADN/genética , Genética Forense/métodos , Tiburones/genética , Animales , Humanos , Análisis de Secuencia de ADN , Especificidad de la Especie
20.
J Anim Ecol ; 90(10): 2302-2314, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34121177

RESUMEN

An animal's energy landscape considers the power requirements associated with residing in or moving through habitats. Within marine environments, these landscapes can be dynamic as water currents will influence animal power requirements and can change rapidly over diel and tidal cycles. In channels and along slopes with strong currents, updraft zones may reduce energy expenditure of negatively buoyant fishes that are also obligate swimmers. Despite marine predators often residing within high-current area, no study has investigated the potential role of the energetic landscape in driving such habitat selectivity. Over 500 grey reef sharks Carcharhinus amblyrhynchos reside in the southern channel of Fakarava Atoll, French Polynesia. We used diver observations, acoustic telemetry and biologging to show that sharks use regions of predicted updrafts and switch their core area of space use based on tidal state (incoming versus outgoing). During incoming tides, sharks form tight groups and display shuttling behaviour (moving to the front of the group and letting the current move them to the back) to maintain themselves in these potential updraft zones. During outgoing tides, group dispersion increases, swimming depths decrease and shuttling behaviours cease. These changes are likely due to shifts in the nature and location of the updraft zones, as well as turbulence during outgoing tides. Using a biomechanical model, we estimate that routine metabolic rates for sharks may be reduced by 10%-15% when in updraft zones. Grey reef sharks save energy using predicted updraft zones in channels and 'surfing the slope'. Analogous to birds using wind-driven updraft zones, negatively buoyant marine animals may use current-induced updraft zones to reduce energy expenditure. Updrafts should be incorporated into dynamic energy landscapes and may partially explain the distribution, behaviour and potentially abundance of marine predators.


Asunto(s)
Tiburones , Animales , Arrecifes de Coral , Ecosistema , Metabolismo Energético , Telemetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA