Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Proteomics ; 297: 105130, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401592

RESUMEN

Seed germination, a key initial event in the plant life cycle, directly affects cotton yield and quality. Gossypium barbadense and Gossypium hirsutum gradually evolved through polyploidization, resulting in different characteristics, and this interspecific variation lacks genetic and molecular explanation. This work aimed to compare the proteomes between G. barbadense and G. hirsutum during seed germination. Here, we identified 2740 proteins for G. barbadense and 3758 for G. hirsutum. In the initial state, proteins in two cotton involved similar bioprocess, such as sugar metabolism, DNA repairing, and ABA signaling pathway. However, in the post-germination stage, G. hirsutum expressed more protein related to redox homeostasis, peroxidase activity, and pathogen interactions. Analyzing the different expression patterns of 915 single-copy orthogroups between the two kinds of cotton indicated that most of the differentially expressed proteins in G. barbadense were related to carbon metabolism. In contrast, most proteins in G. hirsutum were associated with stress response. Besides that, by proteogenomic analysis, we found 349 putative non-canonical peptides, which may be involved in plant development. These results will help to understand the different characteristics of these two kinds of cotton, such as fiber quality, yield, and adaptability. SIGNIFICANCE STATEMENT: Cotton is the predominant natural fiber crop worldwide; Gossypium barbadense and Gossypium hirsutum have evolved through polyploidization to produce differing traits. However, given their specific features, the divergence of mechanisms underlying seed germination between G. hirsutum and G. barbadense has not been discussed. Here, we explore what protein contributes to interspecific differences between G. barbadense and G. hirsutum during the seed germination period. This study helps to elucidate the evolution and domestication history of cotton polyploids and may allow breeders to understand their domestication history better and improve fiber quality and adaptability.


Asunto(s)
Germinación , Gossypium , Gossypium/genética , Proteómica , Semillas , Fenotipo , Fibra de Algodón
2.
Proteomics ; 23(12): e2200473, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36947710

RESUMEN

Nostoc flagelliforme, a terrestrial cyanobacterium spread throughout arid and semi-arid areas, has been long known for its outstanding adaptability to extremely dry conditions. This microorganism is able to recover biological activities within hours after months of anhydrobiosis state, attracting investigation through proteomic analysis. Except for canonical proteome, microproteins encoded by small ORFs (smORFs) have recently been regarded as indispensable participants in metabolic processes. However, the involvement of smORFs in N. flagelliforme remains unknown. Here we first constructed a smORF database in N. flagelliforme using bioinformatic prediction, resulting in 6072 novel smORFs. Then LS-MS/MS analysis was applied to identify expression patterns of microproteins and seek smORFs and their encoded microprotein playing a role during rehydration. In total, 18 novel microproteins were mined based on a smORF searching strategy combined with three proteomic assays, of which five were annotated as ribosomal proteins, one as RNA polymerase subunit, and one as acetohydroxy acid isomeroreductase. We also suggested the possible functions of smORFs according to their expression pattern and discovered two neighboring and homologous smORFs. All these results will expand our knowledge of smORFs-encoded microproteins and their relation to the stress response of extremophilic microorganisms.


Asunto(s)
Nostoc , Proteómica , Humanos , Sistemas de Lectura Abierta , Espectrometría de Masas en Tándem , Nostoc/genética , Nostoc/metabolismo , Fluidoterapia , Micropéptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA