Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 519
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 145, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252090

RESUMEN

Pathological tau fibrils in progressive supranuclear palsy, frontotemporal dementia, chronic traumatic encephalopathy, and Alzheimer's disease each have unique conformations, and post-translational modifications that correlate with unique disease characteristics. However, within Alzheimer's disease (AD), both fibrillar (sarkosyl insoluble (AD SARK tau)), and nonfibrillar (aqueous extractable high molecular weight (AD HMW tau)) preparations have been suggested to be seed-competent. We now explore if these preparations are similar or distinct in their in vivo seeding characteristics. Using an in vivo amplification and time-course paradigm we demonstrate that, for AD HMW and AD SARK tau species, the amplified material is biochemically similar to the original sample. The HMW and SARK materials also show different clearance, propagation kinetics, and propagation patterns. These data indicate the surprising co-occurrence of multiple distinct tau species within the same AD brain, supporting the idea that multiple tau conformers - both fibrillar and nonfibrillar- can impact phenotype in AD.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Humanos , Animales , Encéfalo/patología , Encéfalo/metabolismo , Femenino , Ovillos Neurofibrilares/patología , Ovillos Neurofibrilares/metabolismo , Masculino , Anciano de 80 o más Años , Anciano
3.
Alzheimers Dement ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240044

RESUMEN

Biological and clinical heterogeneity is a major challenge in research for developing new treatments for Alzheimer's disease (AD). AD may be defined by its amyloid beta and tau pathologies, but we recognize that mixed pathologies are common, and that diverse genetics, central nervous system (CNS) and systemic pathophysiological processes, and environmental/experiential factors contribute to AD's diverse clinical and neuropathological features. All these factors are rational targets for therapeutic development; indeed, there are hundreds of candidate pharmacological, dietary, neurostimulation, and lifestyle interventions that show benefits in homogeneous laboratory models. Conventional clinical trial designs accommodate heterogeneity poorly, and this may be one reason that progress in translating candidate interventions has been so difficult. We review the challenges of AD's heterogeneity for the clinical trials enterprise. We then discuss how advances in repeatable biomarkers and digital phenotyping enable novel "single-case" and adaptive trial designs to accelerate therapeutics development, moving us closer to personalized research and medicine for AD. HIGHLIGHTS: Alzheimer's disease is diverse in its clinical features, course, risks, and biology. Typical randomized controlled trials are exclusive and necessarily large to attain arm comparability with broad outcomes. Repeated blood biomarkers and digital tracking can improve outcome measure precision and sensitivity. This enables the use of novel "single-case" and adaptive trial designs for inclusivity, rigor, and efficiency.

4.
Acta Neuropathol Commun ; 12(1): 132, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138580

RESUMEN

Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by 4R tau deposition in neurons as well as in astrocytes and oligodendrocytes. While astrocytic tau deposits are rarely observed in normal aging (so-called aging-related tau astrogliopathy, ARTAG) and Alzheimer's disease (AD), astrocytic tau in the form of tufted astrocytes is a pathognomonic hallmark of PSP. Classical biochemical experiments emphasized tau synthesis in neurons in the central nervous system, suggesting that astrocytic tau inclusions might be derived from uptake of extracellular neuronal-derived tau. However, recent single-nucleus RNAseq experiments highlight the fact that MAPT, the gene encoding tau, is also expressed by astrocytes, albeit in lower amounts. We, therefore, revisited the question of whether astrocyte-driven expression of tau might contribute to astrocytic tau aggregates in PSP by performing fluorescent in situ hybridization/immunohistochemical co-localization in human postmortem brain specimens from individuals with PSP and AD with ARTAG as well as normal controls. We find that, in PSP but not in AD, tau-immunoreactive astrocytes have higher levels of MAPT mRNA compared to astrocytes that do not have tau aggregates. These results suggest that astrocytic responses in PSP are unique to this tauopathy and support the possibility that fundamental changes in PSP astrocyte-endogenous mRNA biology contribute to increased synthesis of tau protein and underlies the formation of the astrocytic tau deposits characteristic of PSP.


Asunto(s)
Astrocitos , Parálisis Supranuclear Progresiva , Proteínas tau , Parálisis Supranuclear Progresiva/metabolismo , Parálisis Supranuclear Progresiva/patología , Parálisis Supranuclear Progresiva/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Humanos , Astrocitos/metabolismo , Astrocitos/patología , Anciano , Masculino , Anciano de 80 o más Años , Femenino , Persona de Mediana Edad , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Transcripción Genética , Encéfalo/metabolismo , Encéfalo/patología
5.
Cell Rep ; 43(8): 114574, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39096489

RESUMEN

A prevailing hypothesis is that neurofibrillary tangles play a causal role in driving cognitive decline in Alzheimer's disease (AD) because tangles correlate anatomically with areas that undergo neuronal loss. We used two-photon longitudinal imaging to directly test this hypothesis and observed the fate of individual neurons in two mouse models. At any time point, neurons without tangles died at >3 times the rate as neurons with tangles. Additionally, prior to dying, they became >20% more distant from neighboring neurons across imaging sessions. Similar microstructural changes were evident in a population of non-tangle-bearing neurons in Alzheimer's donor tissues. Together, these data suggest that nonfibrillar tau puts neurons at high risk of death, and surprisingly, the presence of a tangle reduces this risk. Moreover, cortical microstructure changes appear to be a better predictor of imminent cell death than tangle status is and a promising tool for identifying dying neurons in Alzheimer's.


Asunto(s)
Enfermedad de Alzheimer , Muerte Celular , Ovillos Neurofibrilares , Neuronas , Animales , Enfermedad de Alzheimer/patología , Ovillos Neurofibrilares/patología , Neuronas/patología , Neuronas/metabolismo , Ratones , Humanos , Proteínas tau/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Masculino , Femenino
6.
bioRxiv ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39211086

RESUMEN

In Alzheimer's disease (AD), the microtubule-binding protein tau becomes abnormally hyperphosphorylated and aggregated in selective brain regions such as the cortex and hippocampus 1-3 . However, other brain regions like the cerebellum and brain stem remain largely intact despite the universal expression of tau throughout the brain. Here, we found that an understudied splice isoform of tau termed "big tau" is significantly more abundant in the brain regions less vulnerable to tau pathology compared to tau pathology-vulnerable regions. We used various cellular and animal models to demonstrate that big tau possesses multiple properties that can resist AD-related pathological changes. Importantly, human AD patients show a higher expression level of pathology-resisting big tau in the cerebellum, the brain region spared from tau pathology. Our study examines the unique properties of big tau, expanding our current understanding of tau pathophysiology. Altogether, our data suggest that alternative splicing to favor big tau is a viable strategy to modulate tau pathology.

7.
Nat Commun ; 15(1): 6164, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039043

RESUMEN

Deciphering the striatal interneuron diversity is key to understanding the basal ganglia circuit and to untangling the complex neurological and psychiatric diseases affecting this brain structure. We performed snRNA-seq and spatial transcriptomics of postmortem human caudate nucleus and putamen samples to elucidate the diversity and abundance of interneuron populations and their inherent transcriptional structure in the human dorsal striatum. We propose a comprehensive taxonomy of striatal interneurons with eight main classes and fourteen subclasses, providing their full transcriptomic identity and spatial expression profile as well as additional quantitative FISH validation for specific populations. We have also delineated the correspondence of our taxonomy with previous standardized classifications and shown the main transcriptomic and class abundance differences between caudate nucleus and putamen. Notably, based on key functional genes such as ion channels and synaptic receptors, we found matching known mouse interneuron populations for the most abundant populations, the recently described PTHLH and TAC3 interneurons. Finally, we were able to integrate other published datasets with ours, supporting the generalizability of this harmonized taxonomy.


Asunto(s)
Interneuronas , Transcriptoma , Humanos , Interneuronas/metabolismo , Interneuronas/clasificación , Interneuronas/citología , Masculino , Femenino , Cuerpo Estriado/citología , Cuerpo Estriado/metabolismo , Núcleo Caudado/metabolismo , Núcleo Caudado/citología , Putamen/metabolismo , Putamen/citología , Persona de Mediana Edad , Animales , Anciano , Ratones , Perfilación de la Expresión Génica/métodos , Adulto
8.
Elife ; 122024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896568

RESUMEN

We present open-source tools for three-dimensional (3D) analysis of photographs of dissected slices of human brains, which are routinely acquired in brain banks but seldom used for quantitative analysis. Our tools can: (1) 3D reconstruct a volume from the photographs and, optionally, a surface scan; and (2) produce a high-resolution 3D segmentation into 11 brain regions per hemisphere (22 in total), independently of the slice thickness. Our tools can be used as a substitute for ex vivo magnetic resonance imaging (MRI), which requires access to an MRI scanner, ex vivo scanning expertise, and considerable financial resources. We tested our tools on synthetic and real data from two NIH Alzheimer's Disease Research Centers. The results show that our methodology yields accurate 3D reconstructions, segmentations, and volumetric measurements that are highly correlated to those from MRI. Our method also detects expected differences between post mortem confirmed Alzheimer's disease cases and controls. The tools are available in our widespread neuroimaging suite 'FreeSurfer' (https://surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools).


Every year, thousands of human brains are donated to science. These brains are used to study normal aging, as well as neurological diseases like Alzheimer's or Parkinson's. Donated brains usually go to 'brain banks', institutions where the brains are dissected to extract tissues relevant to different diseases. During this process, it is routine to take photographs of brain slices for archiving purposes. Often, studies of dead brains rely on qualitative observations, such as 'the hippocampus displays some atrophy', rather than concrete 'numerical' measurements. This is because the gold standard to take three-dimensional measurements of the brain is magnetic resonance imaging (MRI), which is an expensive technique that requires high expertise ­ especially with dead brains. The lack of quantitative data means it is not always straightforward to study certain conditions. To bridge this gap, Gazula et al. have developed an openly available software that can build three-dimensional reconstructions of dead brains based on photographs of brain slices. The software can also use machine learning methods to automatically extract different brain regions from the three-dimensional reconstructions and measure their size. These data can be used to take precise quantitative measurements that can be used to better describe how different conditions lead to changes in the brain, such as atrophy (reduced volume of one or more brain regions). The researchers assessed the accuracy of the method in two ways. First, they digitally sliced MRI-scanned brains and used the software to compute the sizes of different structures based on these synthetic data, comparing the results to the known sizes. Second, they used brains for which both MRI data and dissection photographs existed and compared the measurements taken by the software to the measurements obtained with MRI images. Gazula et al. show that, as long as the photographs satisfy some basic conditions, they can provide good estimates of the sizes of many brain structures. The tools developed by Gazula et al. are publicly available as part of FreeSurfer, a widespread neuroimaging software that can be used by any researcher working at a brain bank. This will allow brain banks to obtain accurate measurements of dead brains, allowing them to cheaply perform quantitative studies of brain structures, which could lead to new findings relating to neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Imagenología Tridimensional , Aprendizaje Automático , Humanos , Imagenología Tridimensional/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Fotograbar/métodos , Disección , Imagen por Resonancia Magnética/métodos , Neuropatología/métodos , Neuroimagen/métodos
9.
Acta Neuropathol ; 147(1): 101, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884806

RESUMEN

Insoluble pathogenic proteins accumulate along blood vessels in conditions of cerebral amyloid angiopathy (CAA), exerting a toxic effect on vascular cells and impacting cerebral homeostasis. In this work, we provide new evidence from three-dimensional human brain histology that tau protein, the main component of neurofibrillary tangles, can similarly accumulate along brain vascular segments. We quantitatively assessed n = 6 Alzheimer's disease (AD), and n = 6 normal aging control brains and saw that tau-positive blood vessel segments were present in all AD cases. Tau-positive vessels are enriched for tau at levels higher than the surrounding tissue and appear to affect arterioles across cortical layers (I-V). Further, vessels isolated from these AD tissues were enriched for N-terminal tau and tau phosphorylated at T181 and T217. Importantly, tau-positive vessels are associated with local areas of increased tau neurofibrillary tangles. This suggests that accumulation of tau around blood vessels may reflect a local clearance failure. In sum, these data indicate that tau, like amyloid beta, accumulates along blood vessels and may exert a significant influence on vasculature in the setting of AD.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Ovillos Neurofibrilares , Proteínas tau , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Ovillos Neurofibrilares/patología , Ovillos Neurofibrilares/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Femenino , Masculino , Anciano , Anciano de 80 o más Años , Persona de Mediana Edad , Fosforilación
10.
J Neuropathol Exp Neurol ; 83(9): 772-782, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38874454

RESUMEN

A basic assumption underlying induced pluripotent stem cell (iPSC) models of neurodegeneration is that disease-relevant pathologies present in brain tissue are also represented in donor-matched cells differentiated from iPSCs. However, few studies have tested this hypothesis in matched iPSCs and neuropathologically characterized donated brain tissues. To address this, we assessed iPSC-neuron production of ß-amyloid (Aß) Aß40, Aß42, and Aß43 in 24 iPSC lines matched to donor brains with primary neuropathologic diagnoses of sporadic AD (sAD), familial AD (fAD), control, and other neurodegenerative disorders. Our results demonstrate a positive correlation between Aß43 production by fAD iPSC-neurons and Aß43 accumulation in matched brain tissues but do not reveal a substantial correlation in soluble Aß species between control or sAD iPSC-neurons and matched brains. However, we found that the ApoE4 genotype is associated with increased Aß production by AD iPSC-neurons. Pathologic tau phosphorylation was found to be increased in AD and fAD iPSC-neurons compared to controls and positively correlated with the relative abundance of longer-length Aß species produced by these cells. Taken together, our results demonstrate that sAD-predisposing genetic factors influence iPSC-neuron phenotypes and that these cells are capturing disease-relevant and patient-specific components of the amyloid cascade.


Asunto(s)
Péptidos beta-Amiloides , Encéfalo , Células Madre Pluripotentes Inducidas , Neuronas , Proteínas tau , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Péptidos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Fosforilación , Encéfalo/patología , Encéfalo/metabolismo , Neuronas/metabolismo , Neuronas/patología , Femenino , Masculino , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Persona de Mediana Edad , Anciano , Donantes de Tejidos
11.
Nat Rev Neurol ; 20(8): 457-474, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38906999

RESUMEN

For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The APOEε4 allele significantly increases AD risk, whereas the ε2 allele is protective relative to the most common ε3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene-environment interactions. Although early studies linked APOE to amyloid-ß - one of the two culprit aggregation-prone proteins that define AD - in the past decade, mounting work has associated APOE with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood-brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the APOEε4-linked increased AD risk or enhancing the APOEε2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of APOE-directed therapeutics.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteínas E , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Encéfalo/patología
12.
J Neuropathol Exp Neurol ; 83(10): 870-881, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38917443

RESUMEN

Proteins exhibiting prion-like properties are implicated in tauopathies. The prion-like traits of tau influence disease progression and correlate with severity. Techniques to measure tau bioactivity such as RT-QuIC and biosensor cells lack spatial specificity. Therefore, we developed a histological probe aimed at detecting and localizing bioactive tau in situ. We first induced the recruitment of a tagged probe by bioactive Tau in human brain tissue slices using biosensor cell lysates containing a fluorescent probe. We then enhanced sensitivity and flexibility by designing a recombinant probe with a myc tag. The probe design aimed to replicate the recruitment process seen in prion-like mechanisms based on the cryo-EM structure of tau aggregates in Alzheimer disease (AD). Using this novel probe, we observed selective staining of misfolded tau in pre- and post-synaptic structures within neurofibrillary tangles and neurites, whether or not associated with neuritic plaques. The probe specifically targeted AD-associated bioactive tau and did not recognize bioactive tau from other neurodegenerative diseases. Electron microscopy and immunolabeling further confirmed the identification of fibrillar and non-fibrillar tau. Finally, we established a correlation between quantifying bioactive tau using this technique and gold standard biosensor cells. This technique presents a robust approach for detecting bioactive tau in AD tissues and has potential applications for deciphering mechanisms of tau propagation and degradation pathways.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Proteínas tau , Proteínas tau/metabolismo , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/patología , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Tauopatías/metabolismo , Tauopatías/patología , Técnicas Biosensibles/métodos
13.
Acta Neuropathol ; 147(1): 65, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557897

RESUMEN

Human microglia are critically involved in Alzheimer's disease (AD) progression, as shown by genetic and molecular studies. However, their role in tau pathology progression in human brain has not been well described. Here, we characterized 32 human donors along progression of AD pathology, both in time-from early to late pathology-and in space-from entorhinal cortex (EC), inferior temporal gyrus (ITG), prefrontal cortex (PFC) to visual cortex (V2 and V1)-with biochemistry, immunohistochemistry, and single nuclei-RNA-sequencing, profiling a total of 337,512 brain myeloid cells, including microglia. While the majority of microglia are similar across brain regions, we identified a specific subset unique to EC which may contribute to the early tau pathology present in this region. We calculated conversion of microglia subtypes to diseased states and compared conversion patterns to those from AD animal models. Targeting genes implicated in this conversion, or their upstream/downstream pathways, could halt gene programs initiated by early tau progression. We used expression patterns of early tau progression to identify genes whose expression is reversed along spreading of spatial tau pathology (EC > ITG > PFC > V2 > V1) and identified their potential involvement in microglia subtype conversion to a diseased state. This study provides a data resource that builds on our knowledge of myeloid cell contribution to AD by defining the heterogeneity of microglia and brain macrophages during both temporal and regional pathology aspects of AD progression at an unprecedented resolution.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau/genética , Proteínas tau/metabolismo , Transcriptoma , Encéfalo/patología , Células Mieloides/patología , Microglía/patología , Péptidos beta-Amiloides/metabolismo
14.
Acta Neuropathol ; 147(1): 66, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568475

RESUMEN

Reactive astrogliosis accompanies the two neuropathological hallmarks of Alzheimer's disease (AD)-Aß plaques and neurofibrillary tangles-and parallels neurodegeneration in AD and AD-related dementias (ADRD). Thus, there is growing interest in developing imaging and fluid biomarkers of reactive astrogliosis for AD/ADRD diagnosis and prognostication. Monoamine oxidase-B (MAO-B) is emerging as a target for PET imaging radiotracers of reactive astrogliosis. However, a thorough characterization of MAO-B expression in postmortem control and AD/ADRD brains is lacking. We sought to: (1) identify the primary cell type(s) expressing MAO-B in control and AD brains; (2) quantify MAO-B immunoreactivity in multiple brain regions of control and AD donors as a proxy for PET radiotracer uptake; (3) correlate MAO-B level with local AD neuropathological changes, reactive glia, and cortical atrophy; (4) determine whether the MAOB rs1799836 SNP genotype impacts MAO-B expression level; (5) compare MAO-B immunoreactivity across AD/ADRD, including Lewy body diseases (LBD) and frontotemporal lobar degenerations with tau (FTLD-Tau) and TDP-43 (FTLD-TDP). We found that MAO-B is mainly expressed by subpial and perivascular cortical astrocytes as well as by fibrous white matter astrocytes in control brains, whereas in AD brains, MAO-B is significantly upregulated by both cortical reactive astrocytes and white matter astrocytes across temporal, frontal, and occipital lobes. By contrast, MAO-B expression level was unchanged and lowest in cerebellum. Cortical MAO-B expression was independently associated with cortical atrophy and local measures of reactive astrocytes and microglia, and significantly increased in reactive astrocytes surrounding Thioflavin-S+ dense-core Aß plaques. MAO-B expression was not affected by the MAOB rs1799836 SNP genotype. MAO-B expression was also significantly increased in the frontal cortex and white matter of donors with corticobasal degeneration, Pick's disease, and FTLD-TDP, but not in LBD or progressive supranuclear palsy. These findings support ongoing efforts to develop MAO-B-based PET radiotracers to image reactive astrogliosis in AD/ADRD.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Enfermedad por Cuerpos de Lewy , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Gliosis , Biomarcadores , Atrofia
15.
J Biol Chem ; 300(6): 107313, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657864

RESUMEN

Sortilin-related receptor 1 (SORL1) is an intracellular sorting receptor genetically implicated in Alzheimer's disease (AD) that impacts amyloid precursor protein trafficking. The objective of these studies was to test the hypothesis that SORL1 binds tau, modulates its cellular trafficking and impacts the aggregation of cytoplasmic tau induced by pathological forms of tau. Using surface plasmon resonance measurements, we observed high-affinity binding of tau to SORL1 and the vacuolar protein sorting 10 domain of SORL1. Interestingly, unlike LDL receptor-related protein 1, SORL1 binds tau at both pH 7.4 and pH 5.5, revealing its ability to bind tau at endosomal pH. Immunofluorescence studies confirmed that exogenously added tau colocalized with SORL1 in H4 neuroglioma cells, while overexpression of SORL1 in LDL receptor-related protein 1-deficient Chinese hamster ovary (CHO) cells resulted in a marked increase in the internalization of tau, indicating that SORL1 can bind and mediate the internalization of monomeric forms of tau. We further demonstrated that SORL1 mediates tau seeding when tau RD P301S FRET biosensor cells expressing SORL1 were incubated with high molecular weight forms of tau isolated from the brains of patients with AD. Seeding in H4 neuroglioma cells is significantly reduced when SORL1 is knocked down with siRNA. Finally, we demonstrate that the N1358S mutant of SORL1 significantly increases tau seeding when compared to WT SORL1, identifying for the first time a potential mechanism that connects this specific SORL1 mutation to Alzheimer's disease. Together, these studies identify SORL1 as a receptor that contributes to trafficking and seeding of pathogenic tau.


Asunto(s)
Cricetulus , Proteínas Relacionadas con Receptor de LDL , Proteínas de Transporte de Membrana , Proteínas tau , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Animales , Células CHO , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Línea Celular Tumoral , Unión Proteica , Transporte de Proteínas
16.
Curr Opin Neurobiol ; 86: 102857, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38489865

RESUMEN

The concept of 'prion-like' behavior has emerged in the study of diseases involving protein misfolding where fibrillar structures, called amyloids, self-propagate and induce disease in a fashion similar to prions. From a biological standpoint, in order to be considered 'prion-like,' a protein must traverse cells and tissues and further propagate via a templated conformational change. Since 2017, cryo-electron microscopy structures from patient-derived 'prion-like' amyloids, in particular tau, have been presented and revealed structural similarities shared across amyloids. Since 2021, cryo-EM structures from prions of known infectivity have been added to the ex vivo amyloid structure family. In this review, we discuss current proposals for the 'prion-like' mechanisms of spread for tau and prion protein as well as discuss different influencers on structures of aggregates from tauopathies and prion diseases. Lastly, we discuss some of the current hypotheses for what may distinguish structures that are 'prion-like' from transmissible prion structures.


Asunto(s)
Proteínas Priónicas , Proteínas tau , Humanos , Proteínas tau/metabolismo , Proteínas tau/química , Animales , Proteínas Priónicas/metabolismo , Proteínas Priónicas/química , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Tauopatías/metabolismo , Tauopatías/patología , Priones/metabolismo , Priones/química , Amiloide/metabolismo , Amiloide/química
17.
Acta Neuropathol ; 147(1): 56, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478117

RESUMEN

The stimulator of interferon genes (STING) pathway has been implicated in neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis (ALS). While prior studies have focused on STING within immune cells, little is known about STING within neurons. Here, we document neuronal activation of the STING pathway in human postmortem cortical and spinal motor neurons from individuals affected by familial or sporadic ALS. This process takes place selectively in the most vulnerable cortical and spinal motor neurons but not in neurons that are less affected by the disease. Concordant STING activation in layer V cortical motor neurons occurs in a mouse model of C9orf72 repeat-associated ALS and frontotemporal dementia (FTD). To establish that STING activation occurs in a neuron-autonomous manner, we demonstrate the integrity of the STING signaling pathway, including both upstream activators and downstream innate immune response effectors, in dissociated mouse cortical neurons and neurons derived from control human induced pluripotent stem cells (iPSCs). Human iPSC-derived neurons harboring different familial ALS-causing mutations exhibit increased STING signaling with DNA damage as a main driver. The elevated downstream inflammatory markers present in ALS iPSC-derived neurons can be suppressed with a STING inhibitor. Our results reveal an immunophenotype that consists of innate immune signaling driven by the STING pathway and occurs specifically within vulnerable neurons in ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Células Madre Pluripotentes Inducidas , Enfermedad de Pick , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo
18.
Mol Ther ; 32(5): 1373-1386, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38504517

RESUMEN

Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do, they have a later age of onset, milder clinical course, and less severe neuropathological findings than people without this allele. The contrast is especially stark when compared with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, a more aggressive clinical course and more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Here, we demonstrate that brain exposure to APOE ε2 via a gene therapy approach, which bathes the entire cortical mantle in the gene product after transduction of the ependyma, reduces Aß plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE ε4. This result suggests a promising protective effect of exogenous APOE ε2 and reveals a cell nonautonomous effect of the protein on microglial activation, which we show is similar to plaque-associated microglia in the brain of Alzheimer disease patients who inherit APOE ε2. These data increase the potential that an APOE ε2 therapeutic could be effective in Alzheimer disease, even in individuals born with the risky ε4 allele.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E2 , Modelos Animales de Enfermedad , Terapia Genética , Ratones Transgénicos , Microglía , Placa Amiloide , Animales , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/etiología , Ratones , Terapia Genética/métodos , Humanos , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Microglía/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/terapia , Enfermedades Neuroinflamatorias/metabolismo , Péptidos beta-Amiloides/metabolismo , Biomarcadores
19.
J Alzheimers Dis ; 99(s2): S397-S407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38306039

RESUMEN

Background: Recent Alzheimer's disease (AD) discoveries are increasingly based on studies from a variety of omics technologies on large cohorts. Currently, there is no easily accessible resource for neuroscientists to browse, query, and visualize these complex datasets in a harmonized manner. Objective: Create an online portal of public omics datasets for AD research. Methods: We developed Alzheimer DataLENS, a web-based portal, using the R Shiny platform to query and visualize publicly available transcriptomics and genetics studies of AD on human cohorts. To ensure consistent representation of AD findings, all datasets were processed through a uniform bioinformatics pipeline. Results: Alzheimer DataLENS currently houses 2 single-nucleus RNA sequencing datasets, over 30 bulk RNA sequencing datasets from 19 brain regions and 3 cohorts, and 2 genome-wide association studies (GWAS). Available visualizations for single-nucleus data include bubble plots, heatmaps, and UMAP plots; for bulk expression data include box plots and heatmaps; for pathways include protein-protein interaction network plots; and for GWAS results include Manhattan plots. Alzheimer DataLENS also links to two other knowledge resources: the AD Progression Atlas and the Astrocyte Atlas. Conclusions: Alzheimer DataLENS is a valuable resource for investigators to quickly and systematically explore omics datasets and is freely accessible at https://alzdatalens.partners.org.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Humanos , Estudio de Asociación del Genoma Completo , Biología Computacional/métodos , Encéfalo/metabolismo , Encéfalo/patología , Internet
20.
bioRxiv ; 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38328111

RESUMEN

Insoluble pathogenic proteins accumulate along blood vessels in conditions of cerebral amyloid angiopathy (CAA), exerting a toxic effect on vascular cells and impacting cerebral homeostasis. In this work we provide new evidence from three-dimensional human brain histology that tau protein, the main component of neurofibrillary tangles, can similarly accumulate along brain vascular segments. We quantitatively assessed n=6 Alzheimer's disease (AD), and n=6 normal aging control brains and saw that tau-positive blood vessel segments were present in all AD cases. Tau-positive vessels are enriched for tau at levels higher than the surrounding tissue and appear to affect arterioles across cortical layers (I-V). Further, vessels isolated from these AD tissues were enriched for N-terminal tau and tau phosphorylated at T181 and T217. Importantly, tau-positive vessels are associated with local areas of increased tau neurofibrillary tangles. This suggests that accumulation of tau around blood vessels may reflect a local clearance failure. In sum, these data indicate tau, like amyloid beta, accumulates along blood vessels and may exert a significant influence on vasculature in the setting of AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA