Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto principal
Intervalo de año de publicación
1.
Chem Asian J ; : e202400669, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056223

RESUMEN

The rational design of isolated metals containing zeolites is crucial for the catalytic conversion of biomass-derived compounds. Herein, we explored the insertion behavior of the isomorphic substitution of Ti(IV) in different zeolite frameworks, including ZSM-35 (FER), ZSM-5, and BEA. The different aluminium topological densities of each zeolite framework lead to the creation of different degrees of vacant sites for hosting the tetrahedrally coordinated Ti(IV) active sites. These observations show the precise control of the degree of four-coordinated Ti(IV) sites in a zeolite framework, especially in BEA topology, by tuning the degree of unoccupied sites in the host zeolite structure via dealumination. Interestingly, the more vacancies in the host zeolite structure, the more isolated tetrahedrally coordinated Ti(IV) can be increased, eventually enhancing the catalytic performance in methyl oleate (MO) epoxidation for producing methyl-9,10-epoxystearate (EP). The engineered Ti-ß exhibits outstanding performances in bulky MO epoxidation with the amount of produced EP per number of Ti sites up to 17.1 ± 1.8 mol mol-1. This observation discloses an alternative strategy for optimizing catalyst efficiency in the rational design of the Ti-embedding zeolite catalyst, endeavoring to reach highly efficient catalytic performance.

2.
ACS Appl Mater Interfaces ; 15(36): 42854-42867, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37652465

RESUMEN

The rational design of interface materials containing carbon nanotubes (CNTs) and zeolites (zeolite-CNTs) is a promising perspective in chemical and biochemical communities because they exhibit several outstanding properties such as tunable hydrophobicity-hydrophilicity at interfaces. In this contribution, we report the fabrication of Ag-incorporated nanocrystalline BEA-carbon nanotube (CNT) composites via the one-pot inter-zeolite transformation of the micron-sized FAU-CNT composite in the presence of a Ag precursor. By varying the crystallization time, the inter-zeolite transformation mechanism was explored. Indeed, this process involves an amorphous intermediate of aluminosilicate species with a significant change of the crystal morphology in the presence of CNTs in the synthesis gel. Interestingly, the redispersion of metal particles was observed after the inter-zeolite transformation process, resulting in the high dispersion of metal nanoparticles over BEA nanocrystals. Notably, it was revealed that the Ag sites were also stabilized in the presence of CNT interfaces, leading to the availability of highly active Ag+ ions. To illustrate the beneficial aspect of designer materials, the synthesized Ag-incorporated BEA-CNT composites exhibited high antibacterial activity againstEscherichia coli due to the synergistic effect of the active Ag+ species and appropriate hydrophobic and hydrophilic properties of the hybrid material interfaces. This first example opens up perspectives of the rational design of zeolite-CNT interfaces with high metal dispersion via the inter-zeolite transformation approach for biomedical applications.

3.
Chem Commun (Camb) ; 58(69): 9618-9621, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35929400

RESUMEN

The development of industrial catalysts is of crucial importance for practical uses. However, the use of extruded catalysts in industry is still limited because of a remarkably decreased catalytic activity when combining them with binders. This contribution illustrates the rational design of binder-free hierarchical ZSM-5 pellets and monoliths derived from zeolite@LDHs composites via extrusion and 3D printing technologies, respectively. The designed catalyst applied in bioethanol dehydration boosts the ethylene yield by over 93.4 ± 2.2% due to the synergistic effect of zeolites and LDHs.


Asunto(s)
Zeolitas , Catálisis , Deshidratación , Etilenos , Humanos
4.
ACS Appl Mater Interfaces ; 13(7): 8294-8305, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33560823

RESUMEN

The hierarchical zeolite is one of the most promising materials for catalytic applications. However, the effect of its pore connectivity on catalytic behaviors and coke formation has not clearly been revealed. In this contribution, we demonstrate the visualization of the mesopore architecture in three-dimensional perspectives together with the pore connectivity network of pore-opened hierarchical mordenite (MOR), fabricated by the seed-assisted template-free synthesis followed by the fluoride treatment via the electron tomography (ET) technique. Interestingly, the pore-opened zeolites clearly display higher catalytic performance (approximately 80% of ethylene yield) in ethanol dehydration with respect to the parent one due to their additional pore-opened structures connected to the external surfaces of zeolites. In addition, the effect of pore connectivity network on the coke location and type obtained from ethanol conversion has been observed. It was found that the porous structure of the etched sample is directly connected to the external surface, and then, the large area of crystals can contribute to the reaction. Conversely, only a small amount of closed mesopores is observed inside the crystals in the case of the untreated sample, and therefore, the molecules cannot easily penetrate inside crystals for the catalytic reaction. These results open up promising perspectives for the development of hierarchical catalysts including fabrication by the template-free synthesis approach, pore-architecture characterization, and catalytic applications.

5.
ACS Appl Mater Interfaces ; 12(21): 23812-23821, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32368887

RESUMEN

The development of an effective approach for methane utilization, especially methane conversion to methanol, is a crucial challenge that has remained unsolved satisfactorily. Herein, we propose an alternative concept of methane utilization to methanol over Fe-ZSM-5@ZIF-8. The concept is to use the designed composite as a dual catalyst in which ZIF-8 and Fe-ZSM-5 act simultaneously as a gas adsorbent and catalyst, respectively. In this case, methane can be adsorbed on ZIF-8 at 50 °C and subsequently converted to methanol at a moderate temperature (150 °C) on Fe-ZSM-5. Interestingly, the promising catalytic performance is observed on Fe-ZSM-5@ZIF-8, whereas only trace amounts of produced methanol are detected on isolated Fe-ZSM-5 and ZIF-8. Moreover, the designed composite also facilitates a facile methanol desorption at the hydrophobic surface of the composite. This first example opens up new promising horizons in combined perspectives for gas storage and catalytic process applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA