RESUMEN
Propionate defects (PDs) mainly include methylmalonic (MMA) and propionic acidemia (PA) defects. Lifelong PD patients progress from the compensated to the decompensated stages, the latter of which are characterized by life-threatening acidemia and hyperammonemia crises. PD patients can suffer immunocompromise, especially during the decompensation stage. There is a significant gap in the research regarding the humoral immune response in PD patients. Here, we analyzed serum immunoglobulin concentrations and hemograms across compensated and decompensated stages in PD patients. Nutritional status and crisis triggers of decompensation were also explored. Twenty patients were studied, and 25 decompensation events (DE) and 8 compensation events (CE) were recorded. Compared with those in the CE group, the IgG levels in the DE group (513.4 ± 244.5 mg/dL) were significantly lower than those in the CE group (860.8 ± 456.5 mg/dL) (p < 0.0087). The mean hemoglobin concentration was significantly lower in the DE group (11.8 g/dL) than in the CE group (13.4 g/dL) (p < 0.05). The most frequent (48%) possible decompensation trigger factor was infection. Most of the events were registered in eutrophic patients (87.9%), despite which 65.2% and 50% of patients who experienced decompensated and compensated events, respectively, presented with hypogammaglobulinemia G. These findings provide evidence of the immunodeficiency of PD patients, independent of their nutritional status. We suggest that PD patients be managed as immunocompromised independently of their nutritional status or metabolic state (compensated or decompensated).
Asunto(s)
Agammaglobulinemia , Estado Nutricional , Humanos , Masculino , Femenino , Agammaglobulinemia/sangre , Agammaglobulinemia/inmunología , Agammaglobulinemia/complicaciones , Persona de Mediana Edad , Anciano , Inmunoglobulina G/sangre , Adulto , Propionatos/sangre , Acidemia PropiónicaRESUMEN
Hyperphenylalaninemia (HPA), which includes phenylketonuria (PKU), is a genetic autosomal recessive disorder arising from a deficiency in the enzyme named phenylalanine hydroxylase (PAH). Affected patients can experience severe and irreversible neurological impairments when phenylalanine (Phe) blood concentration exceeds 360 µmol/L (6 mg/dL). Here, we describe a female HPA patient who was born in Mexico to Cuban non-consanguineous parents and identified by newborn screening, and who bears the previously unreported PAH NM_000277.3(PAH):c.[229T>C];[1222C>T] or p.[Tyr77His];[Arg408Trp] genotype. At diagnosis, the patient showed a Phe blood level of 321 µmol/L (5.3 mg/dL), indicative of mild HPA. Neither of the PAH variants found in this patient had been previously reported in the mutational PAH spectrum of the Mexican population. The c.229T>C or p.(Tyr77His) PAH variant was previously related to mild HPA in the Swedish population. Our in silico structural analysis and molecular docking showed that mutated His 77 residue is located in the allosteric site of PAH at the interface of the two monomers. The PDBsum in silico tool predicted that this variant would cause minimal structural disturbance of the protein interface in the presence of Phe at the allosteric site. Docking studies revealed that these structural changes might be attenuated by the allosteric effect of Phe. Given the classic PKU phenotype conditioned by the "Celtic" or c.[1222C>T] or p.(Arg408Trp) PAH variant, which is the second variant in this patient, we propose that p.(Tyr77His) has a hypomorphic feature that could explain her mild HPA phenotype. Our results show the importance of following up on cases detected by NBS and the value of genetic studies and in silico tools that aid in the establishment of correct therapeutic strategies.
RESUMEN
Advances in an early diagnosis by expanded newborn screening (NBS) have been achieved mainly in developed countries, while populations of middle- and low-income countries have poor access, leading to disparities. Expanded NBS in Mexico is not mandatory. Herein, we present an overview of the differences and unmet NBS needs of a group of Mexican patients with inborn errors of intermediary metabolism (IEiM), emphasizing the odyssey experienced to reach a diagnosis. We conducted a retrospective observational study of a historical cohort of patients with IEiM from a national reference center. A total of 924 patients with IEiM were included. Although 72.5% of the diseases identified are detectable by expanded NBS, only 35.4% of the patients were screened. The mortality in the unscreened group was almost two-fold higher than that in the screened group. Patients experienced a median diagnostic delay of 4 months, which is unacceptably long considering that to prevent disability and death, these disorders must be treated in the first days of life. Patients had to travel long distances to our reference center, contributing to their unacceptable diagnostic odyssey. This study highlights the urgent need to have an updated, expanded NBS program with adequate follow up in Mexico and promote the creation of regional medical care centers. We also provide compelling evidence that could prove valuable to decision makers overseeing public health initiatives for individuals impacted by IEiM from middle- and low-income countries.
RESUMEN
BACKGROUND: Gestational diabetes mellitus (GDM) represents the main metabolic alteration during pregnancy. The available methods for diagnosing GDM identify women when the disease is established, and pancreatic beta-cell insufficiency has occurred.The present study aimed to generate an early prediction model (under 18 weeks of gestation) to identify those women who will later be diagnosed with GDM. METHODS: A cohort of 75 pregnant women was followed during gestation, of which 62 underwent normal term pregnancy and 13 were diagnosed with GDM. Targeted metabolomics was used to select serum biomarkers with predictive power to identify women who will later be diagnosed with GDM. RESULTS: Candidate metabolites were selected to generate an early identification model employing a criterion used when performing Random Forest decision tree analysis. A model composed of two short-chain acylcarnitines was generated: isovalerylcarnitine (C5) and tiglylcarnitine (C5:1). An analysis by ROC curves was performed to determine the classification performance of the acylcarnitines identified in the study, obtaining an area under the curve (AUC) of 0.934 (0.873-0.995, 95% CI). The model correctly classified all cases with GDM, while it misclassified ten controls as in the GDM group. An analysis was also carried out to establish the concentrations of the acylcarnitines for the identification of the GDM group, obtaining concentrations of C5 in a range of 0.015-0.25 µmol/L and of C5:1 with a range of 0.015-0.19 µmol/L. CONCLUSION: Early pregnancy maternal metabolites can be used to screen and identify pregnant women who will later develop GDM. Regardless of their gestational body mass index, lipid metabolism is impaired even in the early stages of pregnancy in women who develop GDM.
RESUMEN
The relationship between protein and energy and their appropriate proportions in hyperphenylalaninemia (HPA) or phenylketonuria (PKU) patients in terms of growth have been poorly studied, especially in those diagnosed late. We aimed to describe the protein energy ratio (P:E) and its association with body mass index (BMI) in 638 dietetic and anthropometric assessments from 54 early- or late-diagnosed HPA/PKU patients. Dietetic and anthropometric data were analyzed and classified according to BMI Z-Score and type of diagnosis, early by newborn screening (NBS) or late. Correlation between BMI Z-Score and P:E ratio was established. Percent of dietary protein from Phe-free metabolic formula was analyzed. According to the BMI Z-Score, the majority of assessments were eutrophic (69.4%). The median P:E ratio was >4 in most of the overweight assessments. Remarkably, the underweight group consumed the highest proportion of Phe-free metabolic formula (74.5%). A positive correlation between BMI Z-Score and P:E ratio was found. The highest proportion of underweight was found in the late-diagnosed patients. Our findings might be related to their nutritional history previous to the HPA/PKU treatment. Thus, complex nutritional outcome of the late-diagnosed HPA/PKU patients deserves actions to guarantee the early diagnosis, closer nutritional follow-up and alternative therapeutic approaches.
Asunto(s)
Fenilcetonurias , Delgadez , Recién Nacido , Humanos , Índice de Masa Corporal , México , Fenilcetonurias/diagnóstico , Peso CorporalRESUMEN
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection triggers inflammatory clinical stages that affect the outcome of patients with coronavirus disease 2019 (COVID-19). Disease severity may be associated with a metabolic imbalance related to amino acids, lipids, and energy-generating pathways. The aim of this study was to characterize the profile of amino acids and acylcarnitines in COVID-19 patients. A multicenter, cross-sectional study was carried out. A total of 453 individuals were classified by disease severity. Levels of 11 amino acids, 31 acylcarnitines, and succinylacetone in serum samples were analyzed by electrospray ionization-triple quadrupole tandem mass spectrometry. Different clusters were observed in partial least squares discriminant analysis, with phenylalanine, alanine, citrulline, proline, and succinylacetone providing the major contribution to the variability in each cluster (variable importance in the projection >1.5). In logistic models adjusted by age, sex, type 2 diabetes mellitus, hypertension, and nutritional status, phenylalanine was associated with critical outcomes (odds ratio=5.3 (95% CI 3.16-9.2) in the severe vs. critical model, with an area under the curve of 0.84 (95% CI 0.77-0.90). In conclusion the metabolic imbalance in COVID-19 patients might affect disease progression. This work shows an association of phenylalanine with critical outcomes in COVID-19 patients, highlighting phenylalanine as a potential metabolic biomarker of disease severity.
Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Humanos , SARS-CoV-2 , Estudios Transversales , Aminoácidos , FenilalaninaRESUMEN
Metabolic syndrome (MetS) is a group of several metabolic conditions predisposing to chronic diseases. Individuals diagnosed with MetS are physiologically heterogeneous, with significant sex-specific differences. Therefore, we aimed to investigate the potential sex-specific serum modifications of amino acids and acylcarnitines (ACs) and their relationship with MetS in the Mexican population. This study included 602 participants from the Health Workers Cohort Study. Forty serum metabolites were analyzed using a targeted metabolomics approach. Multivariate regression models were used to test associations of clinical and biochemical parameters with metabolomic profiles. Our findings showed a serum amino acid signature (citrulline and glycine) and medium-chain ACs (AC14:1, AC10, and AC18:10H) associated with MetS. Glycine and AC10 were specific metabolites representative of discrimination according to sex-dependent MetS. In addition, we found that glycine and short-chain ACs (AC2, AC3, and AC8:1) are associated with age-dependent MetS. We also reported a significant correlation between body fat and metabolites associated with sex-age-dependent MetS. In conclusion, the metabolic profile varies by MetS status, and these differences are sex-age-dependent in the Mexican population.
Asunto(s)
Síndrome Metabólico , Carnitina/análogos & derivados , Citrulina , Estudios de Cohortes , Femenino , Glicina , Humanos , Masculino , MetabolómicaRESUMEN
BACKGROUND: Newborn screening for glucose-6-phosphate dehydrogenase deficiency (G6PDd) was implemented in Mexico beginning in 2017. In a Mexican population, genotyping analysis of G6PD as a second-tier method identified a previously unreported missense variant, p.(Ser184Cys), which we propose to call "Toluca", and the extremely rare p.(Gln195His) or "Tainan" variant, which was previously described in the Taiwanese population as a Class II allele through in silico evaluations. Here, we sought to perform in vitro biochemical characterizations of the Toluca and Tainan G6PD natural variants and describe their associated phenotypes. METHODS: The "Toluca" and "Tainan" variants were identified in three unrelated G6PDd newborn males, two of whom lacked evidence of acute hemolytic anemia (AHA) or neonatal hyperbilirubinemia (NHB). We constructed wild-type (WT), Tainan, and Toluca G6PD recombinant enzymes and performed in vitro assessments. RESULTS: Both variants had diminished G6PD expression, decreased affinities for glucose-6-phosphate and NADP+ substrates, significant decreases in catalytic efficiency (â¼97 % with respect to WT-G6PD), and diminished thermostabilities that were partially rescued by NADP+. In silico protein modeling predicted that the variants would have destabilizing effects on the protein tertiary structure, potentially reducing the enzyme half-lives and/or catalytic efficiencies. CONCLUSION: Our data suggest that G6PD "Tainan" and "Toluca" are potential Class II natural variants, which agrees with the absence of chronic nonspherocytic hemolytic anemia (CNSHA) in our patients. It remains to be determined whether these variants represent high-risk genetic factors for developing CNSHA, AHA, and/or NHB.
Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa , Humanos , Masculino , Recién Nacido , Deficiencia de Glucosafosfato Deshidrogenasa/diagnóstico , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/química , Tamizaje Neonatal , NADP , MéxicoRESUMEN
Preterm newborns are extremely vulnerable to morbidities, complications, and death. Preterm birth is a global public health problem due to its socioeconomic burden. Nurturing preterm newborns is a critical medical issue because they have limited nutrient stores and it is difficult to establish enteral feeding, which leads to inadequate growth frequently associated with poor neurodevelopmental outcomes. Parenteral nutrition (PN) provides nutrients to preterm newborns, but its biochemical effects are not completely known. To study the effect of PN treatment on preterm newborns, an untargeted metabolomic 1H nuclear magnetic resonance (NMR) assay was performed on 107 urine samples from 34 hospitalized patients. Multivariate data (Principal Component Analysis, PCA, Orthogonal partial least squares discriminant analysis OPLS-DA, parallel factor analysis PARAFAC-2) and univariate analyses were used to identify the association of specific spectral data with different nutritional types (NTs) and gestational ages. Our results revealed changes in the metabolic profile related to the NT, with the tricarboxylic acid cycle and galactose metabolic pathways being the most impacted pathways. Low citrate and succinate levels, despite higher glucose relative urinary concentrations, seem to constitute the metabolic profile found in the studied critically ill preterm newborns who received PN, indicating an energetic dysfunction that must be taken into account for better nutritional management.
RESUMEN
Establishing the genotypes of patients with hyperphenylalaninemia (HPA)/phenylketonuria (PKU, MIM#261600) has been considered a cornerstone for rational medical management. However, knowledge of the phenylalanine hydroxylase gene (PAH) mutational spectrum in Latin American populations is still limited. Herein, we aim to update the mutational PAH spectrum in the largest cohort of HPA/PKU Mexican patients (N = 124) reported to date. The biallelic PAH genotype was investigated by Sanger automated sequencing, and genotypes were correlated with documented biochemical phenotypes and theoretical tetrahydrobiopterin (BH4) responsiveness. Patients were biochemically classified as having classic PKU (50%, 62/124), mild PKU (20.2%, 25/124) and mild HPA (29.8%, 37/124). Furthermore, 78.2% of the included patients (97/124) were identified by newborn screening. A total of 60 different pathogenic variants were identified, including three novel ones (c. 23del, c. 625_626insC and c. 1315 + 5_1315 + 6insGTGTAACAG), the main categories being missense changes (58%, 35/60) and those affecting the catalytic domain (56.6%, 34/60), and c. 60 + 5G > T was the most frequent variant (14.5%, 36/248) mainly restricted (69.2%) to patients from the central and western parts of Mexico. These 60 types of variants constituted 100 different biallelic PAH genotypes, with the predominance of compound-heterozygous ones (96/124, 77%). The expected BH4 responsiveness based on the PAH genotype was estimated in 52% of patients (65/124), mainly due to the p. (Val388Met) (rs62516101) allele. Instead, our study identified 27 null variants with an allelic phenotype value of zero, with a predominance of c. 60 + 5G > T, which predicts the absence of BH4 responsiveness. An identical genotype reported in BIOPKUdb was found in 92/124 (74%) of our patients, leading to a genotype-phenotype concordance in 80/92 (86.9%) of them. The high number of variants found confirms the heterogeneous and complex mutational landscape of HPA/PKU in Mexico.
Asunto(s)
Mutación , Fenilalanina Hidroxilasa/química , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/genética , Análisis de Secuencia de ADN/métodos , Sustitución de Aminoácidos , Dominio Catalítico , Femenino , Técnicas de Genotipaje , Humanos , Recién Nacido , Mutación con Pérdida de Función , Masculino , México , Modelos Moleculares , Mutación Missense , Tamizaje Neonatal , Conformación ProteicaRESUMEN
Recent evidence shows that obesity correlates negatively with bone mass. However, traditional anthropometric measures such as body mass index could not discriminate visceral adipose tissue from subcutaneous adipose tissue. The visceral adiposity index (VAI) is a reliable sex-specified indicator of visceral adipose distribution and function. Thus, we aimed to identify metabolomic profiles associated with VAI and low bone mineral density (BMD). A total of 602 individuals from the Health Workers Cohort Study were included. Forty serum metabolites were measured using the targeted metabolomics approach, and multivariate regression models were used to test associations of metabolomic profiles with anthropometric, clinical, and biochemical parameters. The analysis showed a serum amino acid signature composed of glycine, leucine, arginine, valine, and acylcarnitines associated with high VAI and low BMD. In addition, we found a sex-dependent VAI in pathways related to primary bile acid biosynthesis, branched-chain amino acids, and the biosynthesis of pantothenate and coenzyme A (CoA). In conclusion, a metabolic profile differs by VAI and BMD status, and these changes are gender-dependent.
RESUMEN
BACKGROUND: Elevations of circulating branched-chain amino acids (BCAA) are observed in humans with obesity and metabolic comorbidities, such as insulin resistance. Although it has been described that microbial metabolism contributes to the circulating pool of these amino acids, studies are still scarce, particularly in pediatric populations. Thus, we aimed to explore whether in early adolescents, gut microbiome was associated to circulating BCAA and in this way to insulin resistance. METHODS: Shotgun sequencing was performed in DNA from fecal samples of 23 early adolescents (10-12 years old) and amino acid targeted metabolomics analysis was performed by LC-MS/MS in serum samples. By using the HUMAnN2 algorithm we explored microbiome functional profiles to identify whether bacterial metabolism contributed to serum BCAA levels and insulin resistance markers. RESULTS: We identified that abundance of genes encoding bacterial BCAA inward transporters were negatively correlated with circulating BCAA and HOMA-IR (P < 0.01). Interestingly, Faecalibacterium prausnitzii contributed to approximately ~ 70% of bacterial BCAA transporters gene count. Moreover, Faecalibacterium prausnitzii abundance was also negatively correlated with circulating BCAA (P = 0.001) and with HOMA-IR (P = 0.018), after adjusting for age, sex and body adiposity. Finally, the association between Faecalibacterium genus and BCAA levels was replicated over an extended data set (N = 124). CONCLUSIONS: We provide evidence that gut bacterial BCAA transport genes, mainly encoded by Faecalibacterium prausnitzii, are associated with lower circulating BCAA and lower insulin resistance. Based on the later, we propose that the relationship between Faecalibacterium prausnitzii and insulin resistance, could be through modulation of BCAA.
Asunto(s)
Aminoácidos de Cadena Ramificada/sangre , Faecalibacterium prausnitzii/fisiología , Microbioma Gastrointestinal , Adolescente , Factores de Edad , Aminoácidos de Cadena Ramificada/metabolismo , Biomarcadores , Pesos y Medidas Corporales , Niño , Femenino , Humanos , Resistencia a la Insulina , Masculino , Metabolómica/métodos , Metagenoma , Metagenómica/métodos , Obesidad/metabolismo , Vigilancia en Salud PúblicaRESUMEN
BACKGROUND & AIMS: Overweight and obesity in reproductive-age women hasten the development of insulin resistance and increase risk for deterioration of pregnancy metabolism. These pregnancy-associated metabolic changes are similar to those of the metabolic syndrome. Thus, some metabolic flexibility must allow appropriate adaptation to the metabolic load that pregnancy imposes. We evaluated metabolic flexibility during uncomplicated pregnancy in women with pre-gestational normal weight or overweight. METHODS: In 20 women with singleton pregnancies, pre-pregnancy BMI was categorized as normal-weight (Nw) or overweight (Ow). The women were seen quarterly, and fasting and postprandial blood samples were collected at each visit. Indirect fasting and/postprandial calorimetry was performed to evaluate metabolic flexibility (Δrespiratory quotient (RQ) = RQpostprandial - RQfasting). RESULTS: In the first trimester, metabolic flexibility was lower in the Ow group compared to the Nw group (0.031 ± 0.0131 vs 0.077 ± 0.018, respectively) without a statistically significant difference (p = 0.053). In the second trimester, the Ow group was significantly more flexible than the Nw group (0.190 ± 0.016 vs 0.077 ± 0.015, respectively (p = 0.004)). For the third trimester, the Ow and Nw groups did not differ in metabolic flexibility (0.074 ± 0.013 vs 0.087 ± 0.021, respectively) (p = 0.40). The most influential variables for metabolic flexibility during pregnancy were lactate, leptin, ß-hydroxybutyrate, glycerol, aromatic amino acids, medium and long chain acylcarnitine's. CONCLUSIONS: Our findings indicate that metabolic flexibility changes throughout pregnancy, independently of pre-pregnancy BMI. These changes maintain metabolic homeostasis between the mother and foetus, allowing for appropriate adjustments during pregnancy.
Asunto(s)
Resistencia a la Insulina , Sobrepeso , Adaptación Fisiológica , Índice de Masa Corporal , Femenino , Humanos , Obesidad , EmbarazoRESUMEN
BACKGROUND: Glucose-6-phosphate dehydrogenase deficiency (G6PDd) newborn screening is still a matter of debate due to its highly heterogeneous birth prevalence and clinical expression, as well as, the lack of enough knowledge on its natural history. Herein, we describe the early natural clinical course and the underlying GDPD genotypes in infants with G6PDd detected by newborn screening and later studied in a single follow-up center. G6PDd newborns were categorized into three groups: group 1: hospitalized with or without neonatal jaundice (NNJ); group 2: non-hospitalized with NNJ; and group 3: asymptomatic. Frequencies of homozygous UGT1A1*28 (rs34983651) genotypes among G6PDd patients with or without NNJ were also explored. RESULTS: A total of 81 newborns (80 males, one female) were included. Most individuals (46.9%) had NNJ without other symptoms, followed by asymptomatic (42.0%) and hospitalized (11.1%) patients, although the hospitalization of only 3 of these patients was related to G6PDd, including NNJ or acute hemolytic anemia (AHA). Nine different G6PDd genotypes were found; the G6PD A-202A/376G genotype was the most frequent (60.5%), followed by the G6PD A-376G/968C (22.2%) and the Union-Maewo (rs398123546, 7.4%) genotypes. These genotypes produce a wide range of clinical and biochemical phenotypes with significant overlapping residual enzymatic activity values among class I, II or III variants. Some G6PD A-202A/376G individuals had enzymatic values that were close to the cutoff value (5.3 U/g Hb, 4.6 and 4.8 U/g Hb in the groups with and without NNJ, respectively), while others showed extremely low enzymatic values (1.1 U/g Hb and 1.4 U/g Hb in the groups with and without NNJ, respectively). Homozygosity for UGT1A1*28 among G6PDd patients with (11.9%, N = 5/42) or without (10.3%, N = 4/39) NNJ did not shown significant statistical difference (p = 0.611). CONCLUSION: Wide variability in residual enzymatic activity was noted in G6PDd individuals with the same G6PD genotype. This feature, along with a documented heterogeneous mutational spectrum, makes it difficult to categorize G6PD variants according to current WHO classification and precludes the prediction of complications such as AHA, which can occur even with > 10% of residual enzymatic activity and/or be associated with the common and mild G6PD A-376G/968C and G6PD A-202A/376G haplotypes.
Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa , Ictericia Neonatal , Femenino , Genotipo , Deficiencia de Glucosafosfato Deshidrogenasa/diagnóstico , Deficiencia de Glucosafosfato Deshidrogenasa/epidemiología , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Haplotipos , Humanos , Recién Nacido , Masculino , Tamizaje NeonatalRESUMEN
The objective of our study was to evaluate the frequency of treatable inborn errors of metabolism (IEM) in a clinical sample of Mexican children and adolescents with neurodevelopmental disorders (NDD). Amino acids and acylcarnitines in blood samples of 51 unrelated children and adolescents were analyzed by tandem mass spectrometry to detect treatable IEM of small molecules. One patient with isovaleric acidemia and autism spectrum disorder (ASD) and another with beta-ketothiolase deficiency and ASD/intellectual disability/attention-deficit/hyperactivity disorder (ADHD) were diagnosed, indicating an IEM frequency of 3.9% (1:26 subjects). The high frequency of treatable IEM indicates the need to perform a minimum metabolic screening as part of the diagnostic approach for patient with NDD, particularly when newborn screening programs are limited to a few disorders.
Asunto(s)
Trastorno del Espectro Autista/complicaciones , Diagnóstico Tardío/estadística & datos numéricos , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/epidemiología , Trastornos del Neurodesarrollo/complicaciones , Adolescente , Niño , Femenino , Humanos , Masculino , Errores Innatos del Metabolismo/psicología , México/epidemiología , Espectrometría de Masas en Tándem/métodosRESUMEN
Abstract Introduction: Any abnormal newborn screening (NBS) test should be subjected to appropriate diagnostic tests and should be followed. Once the newborn has been diagnosed and treated, the family should receive comprehensive genetic services. Aim: To present the experience of studying older siblings of patients with inborn errors of metabolism (IEM) identified by NBS in a single-national follow-up reference center. Methods: A retrospective analysis of medical files of the IEM patients detected by NBS was conducted. All those older siblings who tested positive for the same IEM of the patient detected by newborn screening were included. Results: A total of 26 positive siblings from 18 families with seven different IEM were found (phenylketonuria, argininemia, glucose-6-phosphate dehydrogenase deficiency, 3-methylcrotonyl-CoA carboxylase deficiency, dihydropteridine reductase deficiency, tyrosinemia type 3, and medium chain acyl-CoA dehydrogenase deficiency). The age range of the affected siblings was 2 to 19 years old, with a mean age of 8.5 years. Ten older siblings (38.5%) had clinical consequences for the disease, including severe intellectual disability. Conclusions: It is necessary to study older siblings, and family history and genetic counseling of all NBS-detected families should be recommended, especially in countries where expanded NBS programs are beginning.
RESUMEN
BACKGROUND: Hyperhomocysteinemia, a thrombotic risk factor, may have several causes. Among the genetic causes of hyperhomocysteinemia, there are polymorphisms in the enzymes methylenetetrahydrofolate reductase (C677T) and cystathionine ß-synthase (C699T, C1080T, and 844ins68). Although the frequency of hyperhomocysteinemia in our country is high, there is no evidence about the frequencies of these polymorphisms. METHODS: We analyzed 80 healthy individuals from several regions in our country. We evaluated the fasting and post-oral methionine load plasma Hcy and the genotypes in order to obtain the allele frequencies of the polymorphisms C677T of methylenetetrahydrofolate reductase and C699T, C1080T, and 844ins68 of the cystathionine ß-synthase. RESULTS: No individual had deficiency of folic acid, vitamins B12, or B6, but 80% had post-oral methionine load hyperhomocysteinemia. We found a significant increase in the Hcy plasma concentration associated with age and gender. Only the polymorphism C1080T was significantly associated with hyperhomocysteinemia. CONCLUSION: There is an association between fasting and post-oral methionine load plasma Hcy concentrations with the allelic frequencies of the polymorphisms C669T, 844ins68, and C1080T of the cystathionine ß-synthase and C667T of the methylenetetrahydrofolate reductase in healthy Mexican individuals. As compared with individuals with normal fasting or post-oral methionine load Hcy plasma levels, only C1080T was significantly associated with hyperhomocysteinemia.
RESUMEN
The effect of microbiota composition and its health on bone tissue is a novel field for research. However, their associations with bone mineral density (BMD) have not been established in postmenopausal women. The present study investigates the relation of diet, the microbiota composition, and the serum metabolic profile in postmenopausal women with normal-BMD or with low-BMD. Ninety-two Mexican postmenopausal women were classified into normal-BMD (n = 34) and low-BMD (n = 58). The V4 hypervariable region was sequenced using the Miseq platform. Serum vitamin D was determined by chemiluminescence immunoassay. Serum concentrations of acyl-carnitines and amino acids were determined by electrospray tandem mass spectrometry. Diet was assessed by a food frequency questionnaire. The low-BMD group had fewer observed species, higher abundance of γ-Proteobacteria, lower consumption of lycopene, and lower concentrations of leucine, valine, and tyrosine compared with the normal-BMD group. These amino acids correlated positively with the abundance of Bacteroides. Lycopene consumption positively correlated with Oscillospira and negatively correlated with Pantoea genus abundance. Finally, the intestinal microbiota of women with vitamin D deficiency was related to Erysipelotrichaceae and Veillonellaceae abundance compared to the vitamin D non-deficient group. Associations mediated by the gut microbiota between diet and circulating metabolites with low-BMD were identified.
RESUMEN
Metabolic disturbances and systemic pro-inflammatory changes have been reported in children with obesity. However, it is unclear the time-sequence of metabolic or inflammatory modifications during children obesity evolution. Our study aimed to quantify simultaneously metabolomic and inflammatory biomarkers in serum from children with different levels of adiposity. For this purpose, a cross-sectional study was used to perform targeted metabolomics and inflammatory cytokines measurements. Serum samples from children between six to ten years old were analyzed using either body mass index (BMI) or waist-to-height ratio (WHtR) classifications. One hundred and sixty-eight school-aged children were included. BMI classification in children with overweight or obesity showed altered concentrations of glucose and amino acids (glycine and tyrosine). Children classified by WHtR exhibited imbalances in amino acids (glycine, valine, and tyrosine) and lipids (triacyl glycerides and low-density lipoprotein) compared to control group. No differences in systemic inflammation biomarkers or in the prevalence of other results were found in these children. Abnormal arterial blood pressure was found in 32% of children with increased adiposity. In conclusion, obesity in school-aged children is characterized by significant metabolic modifications that are not accompanied by major disturbances in circulating concentrations of inflammatory biomarkers.
Asunto(s)
Biomarcadores/metabolismo , Índice de Masa Corporal , Inflamación/metabolismo , Metabolómica , Relación Cintura-Estatura , Presión Sanguínea , Niño , Citocinas/sangre , Femenino , Humanos , Masculino , Metaboloma , Análisis Multivariante , Instituciones AcadémicasRESUMEN
Spinocerebellar ataxia type 7 (SCA7), a neurodegenerative disease characterized by cerebellar ataxia and retinal degeneration, is caused by an abnormal CAG repeat expansion in the ATXN7 gene coding region. The onset and severity of SCA7 are highly variable between patients, thus identification of sensitive biomarkers that accurately diagnose the disease and monitoring its progression are needed. With the aim of identified SCA7-specific metabolites with clinical relevance, we report for the first time, to the best of our knowledge, a metabolomics profiling of circulating acylcarnitines and amino acids in SCA7 patients. We identified 21 metabolites with altered levels in SCA7 patients and determined two different sets of metabolites with diagnostic power. The first signature of metabolites (Valine, Leucine, and Tyrosine) has the ability to discriminate between SCA7 patients and healthy controls, while the second one (Methionine, 3-hydroxytetradecanoyl-carnitine, and 3-hydroxyoctadecanoyl-carnitine) possess the capability to differentiate between early-onset and adult-onset patients, as shown by the multivariate model and ROC analyses. Furthermore, enrichment analyses of metabolic pathways suggest alterations in mitochondrial function, energy metabolism, and fatty acid beta-oxidation in SCA7 patients. In summary, circulating SCA7-specific metabolites identified in this study could serve as effective predictors of SCA7 progression in the clinics, as they are sampled in accessible biofluid and assessed by a relatively simple biochemical assay.