Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Commun Med (Lond) ; 1: 33, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35602196

RESUMEN

Background: It is estimated that up to 80% of infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are asymptomatic and asymptomatic patients can still effectively transmit the virus and cause disease. While much of the effort has been placed on decoding single nucleotide variation in SARS-CoV-2 genomes, considerably less is known about their transcript variation and any correlation with clinical severity in human hosts, as defined here by the presence or absence of symptoms. Methods: To assess viral genomic signatures of disease severity, we conducted a systematic characterization of SARS-CoV-2 transcripts and genetic variants in 81 clinical specimens collected from symptomatic and asymptomatic individuals using multi-scale transcriptomic analyses including amplicon-seq, short-read metatranscriptome and long-read Iso-seq. Results: Here we show a highly coordinated and consistent pattern of sgRNA expression from individuals with robust SARS-CoV-2 symptomatic infection and their expression is significantly repressed in the asymptomatic infections. We also observe widespread inter- and intra-patient variants in viral RNAs, known as quasispecies frequently found in many RNA viruses. We identify unique sets of deletions preferentially found primarily in symptomatic individuals, with many likely to confer changes in SARS-CoV-2 virulence and host responses. Moreover, these frequently occurring structural variants in SARS-CoV-2 genomes serve as a mechanism to further induce SARS-CoV-2 proteome complexity. Conclusions: Our results indicate that differential sgRNA expression and structural mutational burden are highly correlated with the clinical severity of SARS-CoV-2 infection. Longitudinally monitoring sgRNA expression and structural diversity could further guide treatment responses, testing strategies, and vaccine development.

2.
J Vis Exp ; (145)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30933081

RESUMEN

Third generation single-molecule DNA sequencing technologies offer significantly longer read length that can facilitate the assembly of complex genomes and analysis of complex structural variants. Nanopore platforms perform single-molecule sequencing by directly measuring the current changes mediated by DNA passage through the pores and can generate hundreds of kilobase (kb) reads with minimal capital cost. This platform has been adopted by many researchers for a variety of applications. Achieving longer sequencing read lengths is the most critical factor to leverage the value of nanopore sequencing platforms. To generate ultra-long reads, special consideration is required to avoid DNA breakages and gain efficiency to generate productive sequencing templates. Here, we provide the detailed protocol of ultra-long DNA sequencing including high molecular weight (HMW) DNA extraction from fresh or frozen cells, library construction by mechanical shearing or transposase fragmentation, and sequencing on a nanopore device. From 20-25 µg of HMW DNA, the method can achieve N50 read length of 50-70 kb with mechanical shearing and N50 of 90-100 kb read length with transposase mediated fragmentation. The protocol can be applied to DNA extracted from mammalian cells to perform whole genome sequencing for the detection of structural variants and genome assembly. Additional improvements on the DNA extraction and enzymatic reactions will further increase the read length and expand its utility.


Asunto(s)
ADN/genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación Completa del Genoma , Línea Celular , Electroforesis en Gel de Campo Pulsado , Biblioteca de Genes , Humanos , Peso Molecular , Nanoporos , Control de Calidad
3.
NPJ Regen Med ; 3: 11, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29872546

RESUMEN

Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration.

4.
Sci Rep ; 6: 29946, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27425195

RESUMEN

Phosphoribosyl pyrophosphate synthetase-1 (PRPS1) is a key enzyme in nucleotide biosynthesis, and mutations in PRPS1 are found in several human diseases including nonsyndromic sensorineural deafness, Charcot-Marie-Tooth disease-5, and Arts Syndrome. We utilized zebrafish as a model to confirm that mutations in PRPS1 result in phenotypic deficiencies in zebrafish similar to those in the associated human diseases. We found two paralogs in zebrafish, prps1a and prps1b and characterized each paralogous mutant individually as well as the double mutant fish. Zebrafish prps1a mutants and prps1a;prps1b double mutants showed similar morphological phenotypes with increasingly severe phenotypes as the number of mutant alleles increased. Phenotypes included smaller eyes and reduced hair cell numbers, consistent with the optic atrophy and hearing impairment observed in human patients. The double mutant also showed abnormal development of primary motor neurons, hair cell innervation, and reduced leukocytes, consistent with the neuropathy and recurrent infection of the human patients possessing the most severe reductions of PRPS1 activity. Further analyses indicated the phenotypes were associated with a prolonged cell cycle likely resulting from reduced nucleotide synthesis and energy production in the mutant embryos. We further demonstrated the phenotypes were caused by delays in the tissues most highly expressing the prps1 genes.


Asunto(s)
Ribosa-Fosfato Pirofosfoquinasa/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Oído Interno/embriología , Oído Interno/inervación , Oído Interno/metabolismo , Embrión no Mamífero/metabolismo , Ojo/metabolismo , Ojo/patología , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis , Humanos , Leucocitos/metabolismo , Modelos Biológicos , Neuronas Motoras/metabolismo , Mutación/genética , Fenotipo , Pigmentación/genética , Ribosa-Fosfato Pirofosfoquinasa/genética , S-Adenosilmetionina/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-28936359

RESUMEN

After injury, zebrafish can restore many tissues that do not regenerate well in mammals, making it a useful vertebrate model for studying regenerative biology. We performed a systematic screen to identify genes essential for hair cell regeneration in zebrafish, and found that the heat shock protein Hspd1 (Hsp60) has a critical role in the regeneration of hair cells and amputated caudal fins. We showed HSP60-injected extracellularly promoted cell proliferation and regeneration in both hair cells and caudal fins. We showed that hspd1 mutant was deficient in leukocyte infiltration at the site of injury. Topical application of HSP60 in a diabetic mouse skin wound model dramatically accelerated wound healing compared with controls. Stimulation of human peripheral blood mononuclear cells with HSP60 triggered a specific induction of M2 phase CD163-positive monocytes. Our results demonstrate that the normally intracellular chaperonin HSP60 has an extracellular signalling function in injury inflammation and tissue regeneration, likely through promoting the M2 phase for macrophages.

6.
Genome Res ; 25(7): 1030-42, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26048245

RESUMEN

The use of CRISPR/Cas9 as a genome-editing tool in various model organisms has radically changed targeted mutagenesis. Here, we present a high-throughput targeted mutagenesis pipeline using CRISPR/Cas9 technology in zebrafish that will make possible both saturation mutagenesis of the genome and large-scale phenotyping efforts. We describe a cloning-free single-guide RNA (sgRNA) synthesis, coupled with streamlined mutant identification methods utilizing fluorescent PCR and multiplexed, high-throughput sequencing. We report germline transmission data from 162 loci targeting 83 genes in the zebrafish genome, in which we obtained a 99% success rate for generating mutations and an average germline transmission rate of 28%. We verified 678 unique alleles from 58 genes by high-throughput sequencing. We demonstrate that our method can be used for efficient multiplexed gene targeting. We also demonstrate that phenotyping can be done in the F1 generation by inbreeding two injected founder fish, significantly reducing animal husbandry and time. This study compares germline transmission data from CRISPR/Cas9 with those of TALENs and ZFNs and shows that efficiency of CRISPR/Cas9 is sixfold more efficient than other techniques. We show that the majority of published "rules" for efficient sgRNA design do not effectively predict germline transmission rates in zebrafish, with the exception of a GG or GA dinucleotide genomic match at the 5' end of the sgRNA. Finally, we show that predicted off-target mutagenesis is of low concern for in vivo genetic studies.


Asunto(s)
Sistemas CRISPR-Cas , Marcación de Gen , Ensayos Analíticos de Alto Rendimiento , Fenotipo , Alelos , Animales , Técnicas de Inactivación de Genes , Marcación de Gen/métodos , Estudio de Asociación del Genoma Completo , Genómica , Células Germinativas/inmunología , Humanos , Mutagénesis , Sitios de Carácter Cuantitativo , ARN Guía de Kinetoplastida/genética , Eliminación de Secuencia , Pez Cebra
7.
BMC Dev Biol ; 12: 6, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22273551

RESUMEN

BACKGROUND: Because of the structural and molecular similarities between the two systems, the lateral line, a fish and amphibian specific sensory organ, has been widely used in zebrafish as a model to study the development/biology of neuroepithelia of the inner ear. Both organs have hair cells, which are the mechanoreceptor cells, and supporting cells providing other functions to the epithelium. In most vertebrates (excluding mammals), supporting cells comprise a pool of progenitors that replace damaged or dead hair cells. However, the lack of regenerative capacity in mammals is the single leading cause for acquired hearing disorders in humans. RESULTS: In an effort to understand the regenerative process of hair cells in fish, we characterized and cloned an egfp transgenic stable fish line that trapped tnks1bp1, a highly conserved gene that has been implicated in the maintenance of telomeres' length. We then used this Tg(tnks1bp1:EGFP) line in a FACsorting strategy combined with microarrays to identify new molecular markers for supporting cells. CONCLUSIONS: We present a Tg(tnks1bp1:EGFP) stable transgenic line, which we used to establish a transcriptional profile of supporting cells in the zebrafish lateral line. Therefore we are providing a new set of markers specific for supporting cells as well as candidates for functional analysis of this important cell type. This will prove to be a valuable tool for the study of regeneration in the lateral line of zebrafish in particular and for regeneration of neuroepithelia in general.


Asunto(s)
Animales Modificados Genéticamente , Proteínas Fluorescentes Verdes/genética , Sistema de la Línea Lateral/citología , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Transcriptoma , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Expresión Génica , Genes Reporteros , Marcadores Genéticos , Proteínas Fluorescentes Verdes/biosíntesis , Hibridación in Situ , Larva/citología , Larva/metabolismo , Sistema de la Línea Lateral/crecimiento & desarrollo , Datos de Secuencia Molecular , Mutagénesis Insercional , Mucosa Olfatoria/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Transcripción Genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA