Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Microencapsul ; 41(3): 204-225, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38456667

RESUMEN

Ethosomes, which are liposomes like structures, mainly composed primarily of ethanol, have attracted considerable attention due to their potential to enhance the drug permeation via skin. The article discusses the formulation and preparation methods of ethosomes, offering insights into the various factors that influence their size, shape, and stability. Moreover, it explores the techniques used to assess the physicochemical properties of ethosomes and their impact on drug delivery effectiveness. The article also elucidates the mechanism by which ethosomes enhance skin permeation, emphasising their ability to modify the lipid structure and fluidity of the stratum corneum. Additionally, the review investigates the applications of ethosomes in diverse drug delivery scenarios, including the delivery of small molecules, peptides, and phytoconstituents. It highlights the potential of ethosomes to improve drug bioavailability, extend drug release, and achieve targeted delivery to specific skin layers or underlying tissues.


Asunto(s)
Absorción Cutánea , Piel , Administración Cutánea , Piel/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Liposomas/química , Portadores de Fármacos/química
2.
Polymers (Basel) ; 14(12)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35745945

RESUMEN

Nowadays, the use of statistical approaches, i.e., Box-Bhenken designs, are becoming very effective for developing and optimizing pharmaceutical drug formulations. In the current work, a Box-Bhenken design was employed using Design Expert version 11 to develop, evaluate, and optimize a hydrogel-based formulation for sustained release of an antiviral drug, i.e., favipiravir. The hydrogels were prepared using the free radical polymerization technique. ß-Cyclodextrin (ß-CD), N,N'-methylenebisacrylamide (MBA), acrylic acid (AA), and potassium per sulfate (KPS) were used as oligomer, crosslinker, monomer, and initiator, respectively. Three variables, including ß-CD (X1), MBA (X2), and AA (X3) were used at various concentrations for the preparation of hydrogels, followed by evaluation of a sol-gel fraction, swelling, porosity, chemical compatibilities, in vitro drug release, and entrapment efficiency. The results of the studies revealed that the degree of swelling was pH dependent, the best swelling being at pH 7.2 (1976%). On the other hand, for the low sol fraction of 0.2%, the reasonable porosity made the hydrogel capable of loading 99% favipiravir, despite its hydrophobic nature. The maximum entrapment efficiency (99%) was observed in optimized hydrogel formulation (F15). Similarly, in vitro drug release studies showed that the prepared hydrogels exhibited a good, sustained release effect till the 24th hour. The kinetic modelling of drug release data revealed that the Korsmeyer-Peppas model was best fit model, describing a diffusion type of drug release from the prepared hydrogels. Conclusively, the outcomes predict that the hydrogel-based system could be a good choice for developing a sustained-release, once-daily dosage form of favipiravir for improved patient compliance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA