Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Neurochem ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497582

RESUMEN

Stressful life events contribute to the onset of major depressive disorder (MDD). We recently demonstrated abnormalities in ubiquitination in the pathophysiology of MDD. However, the underlying molecular mechanisms remain unclear. We investigated the involvement of the ubiquitination system-mediated glutamatergic dysfunction in social impairment induced by chronic social defeat stress (CSDS). Adult C57BL/6J mice were exposed to aggressor ICR male mice for 10 consecutive days. Social impairment was induced by CSDS in the social interaction test 1 days after the last stress exposure. In terms of brain microdialysis, CSDS reduced depolarization-evoked glutamate release in the prefrontal cortex (PFC), which was reversed by a glutamate transporter 1 (GLT-1) inhibitor. Interestingly, the expression of ubiquitinated, but not total GLT-1, was decreased in the PFC of mice exposed to CSDS. The expression of neural precursor cells expressing developmentally downregulated gene 4-like (Nedd4L: E3 ligase for GLT-1), and ubiquitin-conjugating enzyme E2D2 (Ube2d2: E2 ubiquitin-conjugating enzyme for Nedd4L) was also reduced in CSDS mice. Furthermore, the downregulation of the Nedd4L-GLT-1 ubiquitination pathway decreased SIT ratio, but up-regulation increased it even in non-CSDS mice. Taken together, the decrease in GLT-1 ubiquitination may reduce the release of extracellular glutamate induced by high-potassium stimulation, which may lead to social impairment, while we could not find differences in GLT-1 ubiquitination between susceptible and resistant CSDS mice. In conclusion, GLT-1 ubiquitination could play a crucial role in the pathophysiology of MDD and is an attractive target for the development of novel antidepressants.

2.
Brain Behav Immun ; 96: 200-211, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34062230

RESUMEN

Major depressive disorder (MDD) is a common and serious psychiatric disease that involves brain inflammation. Bifidobacterium breve is commonly used as a probiotic and was shown to improve colitis and allergic diseases by suppressing the inflammatory response. Heat-sterilized B. breve has beneficial effects on inflammation. We hypothesize, therefore, that this probiotic might reduce depression symptoms. We tested this is a mouse model of social defeat stress. C57BL/6J mice exposed to chronic social defeat stress (CSDS) for five consecutive days developed a mild depression-like behavior characterized by a social interaction impairment. CSDS also altered the gut microbiota composition, such as increased abundance of Bacilli, Bacteroidia, Mollicutes, and Verrucomicrobiae classes and decreased Erysipelotrichi class. The prophylactic effect of heat-sterilized B. breve as a functional food ingredient was evaluated on the depression-like behavior in mice. The supplementation started two weeks before and lasted two weeks after the last exposure to CSDS. Two weeks after CSDS, the mice showed deficits in social interaction and increased levels of inflammatory cytokines, including interleukin-1ß (IL-1ß) in the prefrontal cortex (PFC) and hippocampus (HIP). Heat-sterilized B. breve supplementation significantly prevented social interaction impairment, suppressed IL-1ß increase in the PFC and HIP, and modulated the alteration of the gut microbiota composition induced by CSDS. These findings suggest that heat-sterilized B. breve prevents depression-like behavior and IL-1ß expression induced by CSDS through modulation of the gut microbiota composition in mice. Therefore, heat-sterilized B. breve used as an ingredient of functional food might prevent MDD.


Asunto(s)
Bifidobacterium breve , Trastorno Depresivo Mayor , Animales , Depresión/prevención & control , Calor , Interleucina-1beta , Ratones , Ratones Endogámicos C57BL , Conducta Social , Derrota Social , Estrés Psicológico
3.
J Neurochem ; 157(3): 642-655, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32275776

RESUMEN

Successful completion of daily activities relies on the ability to select the relevant features of the environment for memory and recall. Disruption to these processes can lead to various disorders, such as attention-deficit hyperactivity disorder (ADHD). Dopamine is a neurotransmitter implicated in the regulation of several processes, including attention. In addition to the higher-order brain function, dopamine is implicated in the regulation of adult neurogenesis. Previously, we generated mice lacking Shati, an N-acetyltransferase-8-like protein on a C57BL/6J genetic background (Shati/Nat8l-/- ). These mice showed a series of changes in the dopamine system and ADHD-like behavioral phenotypes. Therefore, we hypothesized that deficiency of Shati/Nat8l would affect neurogenesis and attentional behavior in mice. We found aberrant morphology of neurons and impaired neurogenesis in the dentate gyrus of Shati/Nat8l-/- mice. Additionally, research has suggested that impaired neurogenesis might be because of the reduction of dopamine in the hippocampus. Galantamine (GAL) attenuated the attentional impairment observed in the object-based attention test via increasing the dopamine release in the hippocampus of Shati/Nat8l-/- mice. The α7 nicotinic acetylcholine receptor antagonist, methyllycaconitine, and dopamine D1 receptor antagonist, SCH23390, blocked the ameliorating effect of GAL on attentional impairment in Shati/Nat8l-/- mice. These results suggest that the ameliorating effect of GAL on Shati/Nat8l-/- attentional impairment is associated with activation of D1 receptors following increased dopamine release in the hippocampus via α7 nicotinic acetylcholine receptor. In summary, Shati/Nat8l is important in both morphogenesis and neurogenesis in the dentate gyrus and attention, possible via modulation of dopaminergic transmission. Cover Image for this issue: https://doi.org/10.1111/jnc.15061.


Asunto(s)
Acetiltransferasas/deficiencia , Acetiltransferasas/genética , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/psicología , Giro Dentado/patología , Neuronas Dopaminérgicas/patología , Neurogénesis/genética , Animales , Atención/efectos de los fármacos , Benzazepinas/farmacología , Espinas Dendríticas/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Giro Dentado/metabolismo , Dopamina/metabolismo , Dopamina/fisiología , Antagonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Femenino , Galantamina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Antagonistas Nicotínicos/farmacología , Nootrópicos/farmacología , Transmisión Sináptica/efectos de los fármacos
4.
J Neurochem ; 157(6): 1963-1978, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33095942

RESUMEN

Indoleamine 2,3-dioxygenase 1 (IDO1) is the first rate-limiting enzyme that metabolizes tryptophan to the kynurenine pathway. Its activity is highly inducible by pro-inflammatory cytokines and correlates with the severity of major depressive disorder (MDD). MicroRNAs (miRNAs) are involved in gene regulation and the development of neuropsychiatric disorders including MDD. However, the role of miRNAs in targeting IDO1 in the pathophysiology of MDD is still unknown. In this study, we investigated the role of novel miRNAs in the regulation of IDO1 activity and its effect on lipopolysaccharide (LPS)-induced depression-like behavior in mice. LPS up-regulated miR-874-3p concomitantly with increase in IDO1 expression in the prefrontal cortex (PFC), increase in immobility in the forced swimming test as depression-like behavior and decrease in locomotor activity as sickness behavior without motor dysfunction. The miR-874-3p increased in both neuron and microglia after LPS. Its mimic significantly suppressed LPS-induced IDO1 expression in the PFC. Infusion of IDO1 inhibitor (1-methyl-l-tryptophan) and miR-874-3p into PFC prevented an increase in immobility in the forced swimming test, but did not decrease in locomotor activity induced by LPS. These results suggest that miR-874-3p may play an important role in preventing the LPS-induced depression-like behavior through inhibition of IDO1 expression. This may also serve as a novel potential target molecule for the treatment of MDD.


Asunto(s)
Depresión/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/biosíntesis , Lipopolisacáridos/toxicidad , MicroARNs/biosíntesis , Corteza Prefrontal/metabolismo , Animales , Depresión/inducido químicamente , Depresión/genética , Regulación Enzimológica de la Expresión Génica , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Corteza Prefrontal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA