Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Cell Biol ; 223(5)2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38517379

RESUMEN

Ubiquitin regulates various cellular functions by posttranslationally modifying substrates with diverse ubiquitin codes. Recent discoveries of new ubiquitin chain topologies, types of bonds, and non-protein substrates have substantially expanded the complexity of the ubiquitin code. Here, we describe the ubiquitin system covering the basic principles and recent discoveries related to mechanisms, technologies, and biological importance.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteostasis , Ubiquitinación , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Animales
2.
Am J Physiol Cell Physiol ; 324(5): C1053-C1060, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36939198

RESUMEN

Ubiquitin regulates a wide variety of biological functions by modifying diverse substrates, via many different conjugation types. Classically, the C-terminus of ubiquitin conjugates to protein substrates via an isopeptide or peptide bond. Recent studies revealed that ubiquitin can form an atypical oxyester bond, which can target protein and even nonproteinaceous substrates, including sugars and lipids. How nonprotein ubiquitination affects substrate and cellular functions is incompletely understood. This review covers recent discoveries in ubiquitination and its potential impacts on biology.


Asunto(s)
Proteínas , Ubiquitina , Ubiquitina/metabolismo , Proteínas/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo
3.
FEBS J ; 290(11): 2865-2867, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36781398

RESUMEN

In this special interview series, we profile members of The FEBS Journal editorial board to highlight their research focus, perspectives on the journal and future directions in their field. Fumiyo Ikeda is Professor at the Ubiquitin Biology Laboratory, Graduate School of Frontier Biosciences, Osaka University (Japan). She has served as an editorial board member of The FEBS Journal since 2021.

5.
Biochem Soc Trans ; 50(2): 799-811, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35343567

RESUMEN

Ubiquitin regulates numerous aspects of biology via a complex ubiquitin code. The linear ubiquitin chain is an atypical code that forms a unique structure, with the C-terminal tail of the distal ubiquitin linked to the N-terminal Met1 of the proximal ubiquitin. Thus far, LUBAC is the only known ubiquitin ligase complex that specifically generates linear ubiquitin chains. LUBAC-induced linear ubiquitin chains regulate inflammatory responses, cell death and immunity. Genetically modified mouse models and cellular assays have revealed that LUBAC is also involved in embryonic development in mice. LUBAC dysfunction is associated with autoimmune diseases, myopathy, and neurodegenerative diseases in humans, but the underlying mechanisms are poorly understood. In this review, we focus on the roles of linear ubiquitin chains and LUBAC in immune and neurodegenerative diseases. We further discuss LUBAC inhibitors and their potential as therapeutics for these diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Animales , Muerte Celular , Ratones , FN-kappa B/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
6.
iScience ; 24(11): 103241, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34755089

RESUMEN

The Linear Ubiquitin Chain Assembly Complex (LUBAC), composed of HOIP, HOIL-1L, and SHARPIN, promotes tumor necrosis factor (TNF)-dependent NF-κB signaling in diverse cell types. HOIL-1L contains an Npl4 Zinc Finger (NZF) domain that specifically recognizes linear ubiquitin chains, but its physiological role in vivo has remained unclear. Here, we demonstrate that the HOIL-1L NZF domain has important regulatory functions in inflammation and immune responses in mice. We generated knockin mice (Hoil-1l T201A;R208A/T201A;R208A ) expressing a HOIL-1L NZF mutant and observed attenuated responses to TNF- and LPS-induced shock, including prolonged survival, stabilized body temperature, reduced cytokine production, and liver damage markers. Cells derived from Hoil-1l T201A;R208A/T201A;R208A mice show reduced TNF-dependent NF-κB activation and incomplete recruitment of HOIL-1L into TNF Receptor (TNFR) Complex I. We further show that HOIL-1L NZF cooperates with SHARPIN to prevent TNFR-dependent skin inflammation. Collectively, our data suggest that linear ubiquitin-chain binding by HOIL-1L regulates immune responses and inflammation in vivo.

7.
Elife ; 102021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34142657

RESUMEN

The linear ubiquitin chain assembly complex (LUBAC) is the only known ubiquitin ligase for linear/Met1-linked ubiquitin chain formation. One of the LUBAC components, heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1L), was recently shown to catalyse oxyester bond formation between ubiquitin and some substrates. However, oxyester bond formation in the context of LUBAC has not been directly observed. Here, we present the first 3D reconstruction of human LUBAC obtained by electron microscopy and report its generation of heterotypic ubiquitin chains containing linear linkages with oxyester-linked branches. We found that this event depends on HOIL-1L catalytic activity. By cross-linking mass spectrometry showing proximity between the catalytic RING-in-between-RING (RBR) domains, a coordinated ubiquitin relay mechanism between the HOIL-1-interacting protein (HOIP) and HOIL-1L ligases is suggested. In mouse embryonic fibroblasts, these heterotypic chains were induced by TNF, which is reduced in cells expressing an HOIL-1L catalytic inactive mutant. In conclusion, we demonstrate that LUBAC assembles heterotypic ubiquitin chains by the concerted action of HOIP and HOIL-1L.


Asunto(s)
Factores de Transcripción , Ubiquitina-Proteína Ligasas , Ubiquitina , Animales , Proteínas Portadoras/metabolismo , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Dominios Proteicos , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
Matrix Biol ; 100-101: 23-29, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33276077

RESUMEN

The ubiquitin-proteasomal system and the autophagy-lysosome system are two major degradation systems in mammalian cells. Ubiquitin not only regulates proteasomal degradation of substrates but also regulates the autophagy pathway. In one type of macroautophagy, called selective autophagy, cargos are recruited to phagophore in a ubiquitin-dependent manner. Ubiquitin can target autophagy regulators for proteasomal degradation, control protein conformation or change interacting partners of these regulators. To understand the regulatory mechanisms of these degradation pathways, it is critical to dissect how the ubiquitin system contributes to them. Since enzymes are key regulators of ubiquitination, in this review, such enzymes in autophagy regulation are discussed, with specific focus on ubiquitin conjugating enzyme E2s, of which roles in autophagy are emerging.


Asunto(s)
Autofagia , Enzimas Ubiquitina-Conjugadoras , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
10.
EMBO J ; 39(24): e103303, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33215740

RESUMEN

HOIP, the catalytic component of the linear ubiquitin chain assembly complex (LUBAC), is a critical regulator of inflammation. However, how HOIP itself is regulated to control inflammatory responses is unclear. Here, we discover that site-specific ubiquitination of K784 within human HOIP promotes tumor necrosis factor (TNF)-induced inflammatory signaling. A HOIP K784R mutant is catalytically active but shows reduced induction of an NF-κB reporter relative to wild-type HOIP. HOIP K784 is evolutionarily conserved, equivalent to HOIP K778 in mice. We generated HoipK778R/K778R knock-in mice, which show no overt developmental phenotypes; however, in response to TNF, HoipK778R/K778R mouse embryonic fibroblasts display mildly suppressed NF-κB activation and increased apoptotic markers. On the other hand, HOIP K778R enhances the TNF-induced formation of TNFR complex II and an interaction between TNFR complex II and LUBAC. Loss of the LUBAC component SHARPIN leads to embryonic lethality in HoipK778R/K778R mice, which is rescued by knockout of TNFR1. We propose that site-specific ubiquitination of HOIP regulates a LUBAC-dependent switch between survival and apoptosis in TNF signaling.


Asunto(s)
Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos , Animales , Femenino , Técnicas de Sustitución del Gen , Células HEK293 , Humanos , Masculino , Ratones , FN-kappa B/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral , Transcriptoma , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/farmacología
11.
Proc Jpn Acad Ser B Phys Biol Sci ; 96(9): 431-439, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33177297

RESUMEN

Ubiquitin is a small protein used for posttranslational modification and it regulates every aspect of biological functions. Through a three-step cascade of enzymatic action, ubiquitin is conjugated to a substrate. Because ubiquitin itself can be post-translationally modified, this small protein generates various ubiquitin codes and triggers differing regulation of biological functions. For example, ubiquitin itself can be ubiquitinated, phosphorylated, acetylated, or SUMOylated. Via the type three secretion system, some bacterial effectors also modify the ubiquitin system in host cells. This review describes the general concept of the ubiquitin system as well as the fundamental functions of ubiquitin in the regulation of cellular responses during inflammation and bacterial infection.


Asunto(s)
Transducción de Señal , Ubiquitina/metabolismo , Animales , Humanos , Inflamación/metabolismo , Inflamación/patología
12.
Elife ; 92020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32851973

RESUMEN

Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the endoplasmic reticulum (ER). Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive. Here, we identify a cytosolic protein, C53, that is specifically recruited to autophagosomes during ER-stress, in both plant and mammalian cells. C53 interacts with ATG8 via a distinct binding epitope, featuring a shuffled ATG8 interacting motif (sAIM). C53 senses proteotoxic stress in the ER lumen by forming a tripartite receptor complex with the ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1. The C53/UFL1/DDRGK1 receptor complex is activated by stalled ribosomes and induces the degradation of internal or passenger proteins in the ER. Consistently, the C53 receptor complex and ufmylation mutants are highly susceptible to ER stress. Thus, C53 forms an ancient quality control pathway that bridges selective autophagy with ribosome-associated quality control in the ER.


For cells to survive they need to be able to remove faulty or damaged components. The ability to recycle faulty parts is so crucial that some of the molecular machinery responsible is the same across the plant and animal kingdoms. One of the major recycling pathways cells use is autophagy, which labels damaged proteins with molecular tags that say 'eat-me'. Proteins called receptors then recognize these tags and move the faulty component into vesicles that transport the cargo to a specialized compartment that recycles broken parts. Cells make and fold around 40% of their proteins at a site called the endoplasmic reticulum, or ER for short. However, the process of folding and synthesizing proteins is prone to errors. For example, when a cell is under stress this can cause a 'stall' in production, creating a build-up of faulty, partially constructed proteins that are toxic to the cell. There are several quality control systems which help recognize and correct these errors in production. Yet, it remained unclear how autophagy and these quality control mechanisms are linked together. Here, Stephani, Picchianti et al. screened for receptors that regulate the recycling of faulty proteins by binding to the 'eat-me' tags. This led to the identification of a protein called C53, which is found in both plant and animal cells. Microscopy and protein-protein interaction tests showed that C53 moves into transport vesicles when the ER is under stress and faulty proteins start to build-up. Once there, C53 interacts with two proteins embedded in the wall of the endoplasmic reticulum. These proteins form part of the quality control system that senses stalled protein production, labelling the stuck proteins with 'eat-me' tags. Together with C53, they identify and remove half-finished proteins before they can harm the cell. The fact that C53 works in the same way in both plant and human cells suggests that many species might use this receptor to recycle stalled proteins. This has implications for a wide range of research areas, from agriculture to human health. A better understanding of C53 could be beneficial for developing stress-resilient crops. It could also aid research into human diseases, such as cancer and viral infections, that have been linked to C53 and its associated proteins.


Asunto(s)
Autofagia/fisiología , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Arabidopsis/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Homeostasis , Humanos , Proteostasis/fisiología , Proteínas Supresoras de Tumor/metabolismo
13.
J Cell Biol ; 219(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32858748

RESUMEN

Mitophagy has a critical role in maintaining cellular homeostasis by removing damaged mitochondria. In this issue, Yamano et al. (2020. J. Cell Biol. https://doi.org/10.1083/jcb.201912144) uncover that a novel complex of the autophagy adaptor optineurin and the membrane protein ATG9A specifically regulate ubiquitin-induced mitophagy.


Asunto(s)
Mitofagia , Ubiquitina , Autofagia , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas de Transporte Vesicular/metabolismo
14.
Cancer Res ; 80(14): 3009-3022, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32366477

RESUMEN

HACE1 is an E3 ubiquitin ligase with important roles in tumor biology and tissue homeostasis. Loss or mutation of HACE1 has been associated with the occurrence of a variety of neoplasms, but the underlying mechanisms have not been defined yet. Here, we report that HACE1 is frequently mutated in human lung cancer. In mice, loss of Hace1 led to enhanced progression of KRasG12D -driven lung tumors. Additional ablation of the oncogenic GTPase Rac1 partially reduced progression of Hace1-/- lung tumors. RAC2, a novel ubiquitylation target of HACE1, could compensate for the absence of its homolog RAC1 in Hace1-deficient, but not in HACE1-sufficient tumors. Accordingly, ablation of both Rac1 and Rac2 fully averted the increased progression of KRasG12D -driven lung tumors in Hace1-/- mice. In patients with lung cancer, increased expression of HACE1 correlated with reduced levels of RAC1 and RAC2 and prolonged survival, whereas elevated expression of RAC1 and RAC2 was associated with poor prognosis. This work defines HACE1 as a crucial regulator of the oncogenic activity of RAC-family GTPases in lung cancer development. SIGNIFICANCE: These findings reveal that mutation of the tumor suppressor HACE1 disrupts its role as a regulator of the oncogenic activity of RAC-family GTPases in human and murine lung cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/14/3009/F1.large.jpg.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinogénesis/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/prevención & control , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión al GTP rac/antagonistas & inhibidores , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinogénesis/patología , Proliferación Celular , Humanos , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pronóstico , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteína RCA2 de Unión a GTP
15.
Sci Signal ; 13(617)2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019898

RESUMEN

The Parkin-coregulated gene (PACRG), which encodes a protein of unknown function, shares a bidirectional promoter with Parkin (PRKN), which encodes an E3 ubiquitin ligase. Because PRKN is important in mitochondrial quality control and protection against stress, we tested whether PACRG also affected these pathways in various cultured human cell lines and in mouse embryonic fibroblasts. PACRG did not play a role in mitophagy but did play a role in tumor necrosis factor (TNF) signaling. Similarly to Parkin, PACRG promoted nuclear factor κB (NF-κB) activation in response to TNF. TNF-induced nuclear translocation of the NF-κB subunit p65 and NF-κB-dependent transcription were decreased in PACRG-deficient cells. Defective canonical NF-κB activation in the absence of PACRG was accompanied by a decrease in linear ubiquitylation mediated by the linear ubiquitin chain assembly complex (LUBAC), which is composed of the two E3 ubiquitin ligases HOIP and HOIL-1L and the adaptor protein SHARPIN. Upon TNF stimulation, PACRG was recruited to the activated TNF receptor complex and interacted with LUBAC components. PACRG functionally replaced SHARPIN in this context. In SHARPIN-deficient cells, PACRG prevented LUBAC destabilization, restored HOIP-dependent linear ubiquitylation, and protected cells from TNF-induced apoptosis. This function of PACRG in positively regulating TNF signaling may help to explain the association of PACRG and PRKN polymorphisms with an increased susceptibility to intracellular pathogens.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Chaperonas Moleculares/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Ratones Noqueados , Proteínas de Microfilamentos/genética , Mitofagia/genética , Chaperonas Moleculares/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Ubiquitina-Proteína Ligasas/genética
16.
Semin Cell Dev Biol ; 93: 125-135, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30195063

RESUMEN

The balance between cell survival and cell death is often lost in human pathologies such as inflammation and cancer. Autophagy plays a critical role in cell survival: essential nutrients are generated by autophagy-dependent degradation and recycling of cellular garbage. On the other hand, cell death is induced by different programs, such as apoptosis, pyroptosis, and necroptosis. Emerging evidence is revealing how cell survival and cell death pathways are coordinated to determine cell fate. For instance, posttranslational modification of proteins with ubiquitin regulates many steps of autophagy and cell death pathways. In this review article, we will discuss how the ubiquitin system influences cell death and autophagy.


Asunto(s)
Autofagia , Ubiquitina/metabolismo , Animales , Muerte Celular , Humanos
17.
Autophagy ; 14(7): 1283-1284, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29929453

RESUMEN

The Inhibitor of Apoptosis (IAP) family member, Baculoviral IAP Repeat Containing 6 (BIRC6)/BRUCE is a ubiquitin conjugating E2 enzyme and a well-established anti-apoptosis regulator. However, its role in mammalian autophagy has not been shown. We identified BIRC6 as an important positive regulator of macroautophagy/autophagy by performing an siRNA screen targeting enzymes in the ubiquitin pathway. Compared to wild-type cells, BIRC6-deficient cells show accumulation of lipidated LC3B both at basal and starved conditions. Furthermore, BIRC6 deficiency blocks starvation-induced autophagic flux monitored by a tandem fluorescent autophagy sensor, mCherry-GFP-LC3B. Most strikingly, fusion of autophagosomes and lysosomes is blocked in BIRC6-deficient cells. BIRC6 colocalizes with the lysosomal protein LAMP2 in cells, and biochemically interacts with STX17 (syntaxin 17), which is a marker for completed autophagosomes. These data collectively suggest that BIRC6 bridges lysosomes and autophagosomes by interacting with these proteins. Because a deletion mutant of BIRC6 lacking the UBC domain partially rescues the autophagosome-lysosome fusion defect in BIRC6-deficient cells, a role of BIRC6 in this event is independent of its E2 catalytic activity.


Asunto(s)
Apoptosis , Autofagosomas/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Lisosomas/metabolismo , Fusión de Membrana , Animales , Fibroblastos/metabolismo , Ratones , Modelos Biológicos
18.
FEBS J ; 285(15): 2746-2761, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29679476

RESUMEN

Ubiquitin modification (ubiquitination) of target proteins can vary with respect to chain lengths, linkage type, and chain forms, such as homologous, mixed, and branched ubiquitin chains. Thus, ubiquitination can generate multiple unique surfaces on a target protein substrate. Ubiquitin-binding domains (UBDs) recognize ubiquitinated substrates, by specifically binding to these unique surfaces, modulate the formation of cellular signaling complexes and regulate downstream signaling cascades. Among the eight different homotypic chain types, Met1-linked (also termed linear) chains are the only chains in which linkage occurs on a non-Lys residue of ubiquitin. Linear ubiquitin chains have been implicated in immune responses, cell death and autophagy, and several UBDs - specific for linear ubiquitin chains - have been identified. In this review, we describe the main principles of ubiquitin recognition by UBDs, focusing on linear ubiquitin chains and their roles in biology.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Ubiquitina/metabolismo , Animales , Sitios de Unión , Dominio Catalítico , Displasia Ectodérmica/genética , Displasia Ectodérmica/inmunología , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Mutación , Unión Proteica , Dominios Proteicos , Proteínas/genética , Ubiquitinación , Dedos de Zinc
19.
Nat Commun ; 9(1): 599, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29426817

RESUMEN

Autophagy has an important role in cellular homeostasis by degrading and recycling cytotoxic components. Ubiquitination is known to target cargoes for autophagy; however, key components of this pathway remain elusive. Here we performed an RNAi screen to uncover ubiquitin modifiers that are required for starvation-induced macroautophagy in mammalian cells. Our screen uncovered BRUCE/Apollon/Birc6, an IAP protein, as a new autophagy regulator. Depletion of BRUCE leads to defective fusion of autophagosomes and lysosomes. Mechanistically, BRUCE selectively interacts with two ATG8 members GABARAP and GABARAPL1, as well as with Syntaxin 17, which are all critical regulators of autophagosome-lysosome fusion. In addition, BRUCE colocalizes with LAMP2. Interestingly, a non-catalytic N-terminal BRUCE fragment that is sufficient to bind GABARAP/GABARAPL1 and Syntaxin 17, and to colocalize with LAMP2, rescues autolysosome formation in Bruce -/- cells. Thus, BRUCE promotes autolysosome formation independently of its ubiquitin-conjugating activity and is a regulator of both macroautophagy and apoptosis.


Asunto(s)
Autofagosomas/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Lisosomas/metabolismo , Fusión de Membrana , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis , Autofagia/genética , Sistemas CRISPR-Cas , Línea Celular , Células Cultivadas , Células HEK293 , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Lisosomas/genética , Ratones Noqueados , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica , Interferencia de ARN
20.
Crit Rev Biochem Mol Biol ; 52(4): 425-460, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28524749

RESUMEN

Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Humanos , Transducción de Señal , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA