Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 19(190): 20210872, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35582813

RESUMEN

Wheat and other staple crops are devastated by fungal diseases. Many fungal plant pathogens are spread via active or passive discharge of microscopic spores. Here, we described the unique transport of spores of the fungal pathogen Epicoccum tritici, causal agent of black sooty mould, on wheat awns. The unique multi-scale architecture of wheat awns, coupled with condensation and evaporation of dew droplets, facilitated the transport and agglomeration of spores of the fungus. First, dew droplets spontaneously transported spores from the tips of awn hairs to the neighbouring stomatal ridges, driven by gradients in Laplace pressure and surface wettability. Subsequently, spores agglomerated into dry clusters due to the Cheerios effect and evaporation, increasing the likelihood of passive spore removal via wind shear and/or rainsplash. Future plant breeding approaches should consider the development of modified spike structures, such as those without awns or awn hairs, to reduce the potential for spread of fungal plant pathogens.


Asunto(s)
Hojas de la Planta , Triticum , Productos Agrícolas , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Esporas Fúngicas , Triticum/microbiología , Viento
2.
ACS Appl Mater Interfaces ; 10(38): 32874-32884, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30221924

RESUMEN

Despite exceptional recent advances in tailoring the wettability of surfaces, to date, no engineered surface can passively suppress the in-plane growth of frost that invariably occurs in humid, subfreezing environments. Here, we show that up to 90% of a surface can exhibit passive antifrosting by using chemical or physical wettability patterns to template "ice stripes" across the surface. As ice exhibits a depressed vapor pressure relative to liquid water, these sacrificial ice stripes siphon the supersaturated water vapor to keep the intermediate surface areas dry from dew and frost. Further, we show that when these sacrificial ice stripes are elevated atop microfins, they diffusively coarsen in a suspended state above the surface. The suspended state of the coarsening ice results in a diffusive growth rate an order of magnitude slower than frost coarsening directly on a solid substrate and should also minimize its adhesive strength to the surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA