Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892474

RESUMEN

Diabetic retinopathy (DR) is a very serious diabetes complication. Changes in the O-linked N-acetylglucosamine (O-GlcNAc) modification are associated with many diseases. However, its role in DR is not fully understood. In this research, we explored the effect of O-GlcNAc modification regulation by activating AMP-activated protein kinase (AMPK) in DR, providing some evidence for clinical DR treatment in the future. Bioinformatics was used to make predictions from the database, which were validated using the serum samples of diabetic patients. As an in vivo model, diabetic mice were induced using streptozotocin (STZ) injection with/without an AMPK agonist (metformin) or an AMPK inhibitor (compound C) treatment. Electroretinogram (ERG) and H&E staining were used to evaluate the retinal functional and morphological changes. In vitro, 661 w cells were exposed to high-glucose conditions, with or without metformin treatment. Apoptosis was evaluated using TUNEL staining. The protein expression was detected using Western blot and immunofluorescence staining. The angiogenesis ability was detected using a tube formation assay. The levels of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in the serum changed in the DR patients in the clinic. In the diabetic mice, the ERG wave amplitude and retinal thickness decreased. In vitro, the apoptotic cell percentage and Bax expression were increased, and Bcl2 expression was decreased in the 661 w cells under high-glucose conditions. The O-GlcNAc modification was increased in DR. In addition, the expression of GFAT/TXNIP O-GlcNAc was also increased in the 661 w cells after the high-glucose treatment. Additionally, the Co-immunoprecipitation(CO-IP) results show that TXNIP interacted with the O-GlcNAc modification. However, AMPK activation ameliorated this effect. We also found that silencing the AMPKα1 subunit reversed this process. In addition, the conditioned medium of the 661 w cells may have affected the tube formation in vitro. Taken together, O-GlcNAc modification was increased in DR with photoreceptor cell degeneration and neovascularization; however, it was reversed after activating AMPK. The underlying mechanism is linked to the GFAT/TXNIP-O-GlcNAc modification signaling axis. Therefore, the AMPKα1 subunit plays a vital role in the process.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Acetilglucosamina , Diabetes Mellitus Experimental , Retinopatía Diabética , N-Acetilglucosaminiltransferasas , Retinopatía Diabética/metabolismo , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/patología , Animales , Ratones , Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/antagonistas & inhibidores , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Masculino , Apoptosis/efectos de los fármacos , Metformina/farmacología , beta-N-Acetilhexosaminidasas/metabolismo , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores , Retina/metabolismo , Retina/patología , Retina/efectos de los fármacos , Ratones Endogámicos C57BL , Línea Celular
2.
Heliyon ; 10(11): e32050, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38882284

RESUMEN

Background: Several scholarly publications have thoroughly examined the significant role of autophagy in the pathogenesis, progression, and treatment of retinal diseases. This research utilized bibliometric analysis to identify the primary areas of focus and emerging trends within the discipline and offer a comprehensive summary. Methods: The research articles and reviews regarding autophagy and retinal diseases from 2009-01-01 to 2022-12-31 were from the Web of Science Core Collection (WOSCC). The software VOSviewer and CiteSpace were applied to analyze and visualize maps of countries, organizations, authors, journals, keyword networks, and citations in the field of autophagy in retinal diseases. Results: 854 qualified records (721 articles and 133 reviews) were retrieved in this research. The annual publication output of literature shows a growing trend. China is the most productive country, and the author with the most publications is Kai Kaarniranta. Journal Autophagy published the most articles in this field. Keywords analysis can effectively reflect the research hot spots and indicate that diabetic retinopathy and glaucoma have drawn more attention recently. Researchers have shifted the research emphasis on "AMPK", "angiogenesis", "mutation", and "inflammation". Conclusions: With the bibliometric analysis approach, we presented the number of publications, countries, regions, authors, institutions, keywords, and citations, which further helps researchers understand the hot spots and trends in the field of autophagy in retinal diseases and explore the issues in the rapidly developing area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA