Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Hazard Mater ; 465: 132989, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38000283

RESUMEN

Stormwater treatment systems such as biofilters could intercept and remove pollutants from contaminated runoff in wildfire-affected areas, ensuring the protection of water quality downstream. However, the deposition of wildfire residues such as ash and black carbon onto biofilters could potentially impair their stormwater treatment functions. Yet, whether and how wildfire residue deposition could affect biofilter functions is unknown. This study examines the impact of wildfire residue deposition on biofilter infiltration and pollutant removal capacities. Exposure to wildfire residues decreased the infiltration capacity based on the amount of wildfire deposited. Wildfire residues accumulated at the top layer of the biofilter, forming a cake layer, but scraping this layer restored the infiltration capacity. While the deposition of wildfire residues slightly changed the pore water geochemistry, it did not significantly alter the removal of metals and E. coli. Although wildfire residues leached some metals into pore water within the simulated root zone, the leached metals were effectively removed by the compost present in the filter media. Collectively, these results indicate that biofilters downstream of wildfire-prone areas could remain resilient or functional and protect downstream water quality if deposited ash is periodically scraped to restore any loss of infiltration capacity following wildfire residue deposition.


Asunto(s)
Resiliencia Psicológica , Purificación del Agua , Incendios Forestales , Calidad del Agua , Abastecimiento de Agua , Escherichia coli , Lluvia , Filtración/métodos , Metales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA