Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Parasitol Int ; 101: 102900, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38701942

RESUMEN

This study reports the metazoan ectoparasite fauna of juvenile Critically Endangered green sawfish, Pristis zijsron, and sympatric elasmobranchs in Western Australia. Five parasite taxa were found on 76 screened P. zijsron: Caligus furcisetifer (Copepoda: Caligidae), Dermopristis pterophila (Monogenea: Microbothriidae), Branchellion plicobranchus and Stibarobdella macrothela (Hirudinea: Piscicolidae), and praniza larvae of an unidentified gnathiid isopod. Only C. furcisetifer and D. pterophila were common, exhibiting discrepant site-specificity, with C. furcisetifer occurring mostly on the head and rostrum, and D. pterophila around the pectoral and pelvic fins. Intensity of infection for C. furcisetifer and D. pterophila increased with host total length and was influenced by host sex, but in opposite directions; intensity of C. furcisetifer was greater on female P. zijsron, whereas intensity of D. pterophila was greater on males. In the Ashburton River, likelihood of infection for C. furcisetifer and D. pterophila on P. zijsron increased with time since substantial freshwater discharge events, suggesting decreased salinity impacts both taxa. In addition to P. zijsron, five other sympatric elasmobranch species were opportunistically screened for ectoparasites in the study area: the giant shovelnose ray, Glaucostegus typus, the eyebrow wedgefish, Rhynchobatus palpebratus, the nervous shark, Carcharhinus cautus, the lemon shark, Negaprion acutidens, and the graceful shark, Carcharhinus amblyrhynchoides. Caligus furcisetifer was found on R. palpebratus; no other parasites of P. zijsron were found on other sympatric elasmobranch species. Conversely, Perissopus dentatus (Copepoda: Pandaridae) was found on all three carcharhinids but not on batoid rays (P. zijsron, G. typus or R. palpebratus).


Asunto(s)
Infestaciones Ectoparasitarias , Especies en Peligro de Extinción , Enfermedades de los Peces , Animales , Australia Occidental , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/epidemiología , Infestaciones Ectoparasitarias/veterinaria , Infestaciones Ectoparasitarias/parasitología , Infestaciones Ectoparasitarias/epidemiología , Masculino , Femenino , Elasmobranquios/parasitología , Copépodos/clasificación , Isópodos/clasificación , Simpatría
2.
Int J Parasitol Parasites Wildl ; 17: 185-193, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35141133

RESUMEN

A new microbothriid monogenean Dermopristis pterophilus n. sp. is described from the skin of the Critically Endangered green sawfish Pristis zijsron Bleeker, 1851 in the Ashburton River delta, northern Western Australia. Analyses of the 28S ribosomal DNA marker and the molecular barcoding markers Histone 3 and Elongation Factor 1 α confirmed position among the Microbothriidae, with close affinity to the only other sequenced representative of Dermopristis Kearn, Whittington and Evans-Groing, 2010. The new species is morphologically consistent with the concept of Dermopristis; it has two testes, lacks a male copulatory organ and has a simple haptor. It is smaller than its two congeners D. paradoxus Kearn, Whittington and Evans-Gowing, 2010 and D. cairae Whittington and Kearn, 2011 and is most similar to the former, distinguished only in that it lacks the strong, transverse, parallel ridges on the ventral body surface that characterise that species. It is more easily distinguished from D. cairae, differing in body shape, possession of a seminal receptacle, and relative position and size of the haptor. It may further differ from both species by fine details of the gut diverticula, although these details are difficult to ascertain. Spermatophores were observed in the new species, similar to those previously reported for D. cairae. The new species exhibits site attachment preference: infections were greatest on and immediately adjacent to the host pelvic fins (including male reproductive organs, i.e. claspers), moderate in proximity to the dorsal and pectoral fins, few on the caudal fin and peduncle, and infrequently, isolated worms occurred elsewhere on the dorsal and ventral surfaces of the body. There was no incidence of infection on the head (including rostrum). We presume D. pterophilus is restricted to P. zijsron and thus likely faces the same threat of extinction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA