Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Public Health ; 114(4): 424-434, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38478865

RESUMEN

Objectives. To examine inequities in conversion practice exposure across intersections of ethnoracial groups and gender identity in the United States. Methods. Data were obtained from The Population Research in Identity and Disparities for Equality Study of sexual and gender minority people from 2019 to 2021 (n = 9274). We considered 3 outcomes: lifetime exposure, age of first exposure, and period between first and last exposure among those exposed to conversion practices. We used log-binomial, Cox proportional hazards, and negative binomial models to examine inequities by ethnoracial groups and gender identity adjusting for confounders. We considered additive interaction. Results. Conversion practice prevalence was highest among minoritized ethnoracial transgender and nonbinary participants (TNB; 8.6%). Compared with White cisgender participants, minoritized ethnoracial TNB participants had twice the prevalence (prevalence ratio = 2.16; 95% confidence interval [CI] = 1.62, 2.86) and risk (hazard ratio = 2.04; 95% CI = 1.51, 2.69) of conversion practice exposure. Furthermore, there was evidence of a positive additive interaction for age of first exposure. Conclusions. Minoritized ethnoracial TNB participants were most likely to recall experiencing conversion practices. Public Health Implications. Policies banning conversion practices may reduce the disproportionate burden experienced by minoritized ethnoracial TNB participants. (Am J Public Health. 2024;114(4):424-434. https://doi.org/10.2105/AJPH.2024.307580).


Asunto(s)
Identidad de Género , Personas Transgénero , Femenino , Humanos , Masculino , Conducta Sexual , Modelos Estadísticos , Políticas
2.
Adv Neurobiol ; 30: 37-99, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36928846

RESUMEN

Historically, animal models have been routinely used in the characterization of novel chemical entities (NCEs) for various psychiatric disorders. Animal models have been essential in the in vivo validation of novel drug targets, establishment of lead compound pharmacokinetic to pharmacodynamic relationships, optimization of lead compounds through preclinical candidate selection, and development of translational measures of target occupancy and functional target engagement. Yet, with decades of multiple NCE failures in Phase II and III efficacy trials for different psychiatric disorders, the utility and value of animal models in the drug discovery process have come under intense scrutiny along with the widespread withdrawal of the pharmaceutical industry from psychiatric drug discovery. More recently, the development and utilization of animal models for the discovery of psychiatric NCEs has undergone a dynamic evolution with the application of the Research Domain Criteria (RDoC) framework for better design of preclinical to clinical translational studies combined with innovative genetic, neural circuitry-based, and automated testing technologies. In this chapter, the authors will discuss this evolving role of animal models for improving the different stages of the discovery and development in the identification of next generation treatments for psychiatric disorders.


Asunto(s)
Trastornos Mentales , Animales , Trastornos Mentales/tratamiento farmacológico , Modelos Animales
3.
ACS Chem Neurosci ; 14(3): 435-457, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36655909

RESUMEN

Degeneration of the cholinergic basal forebrain is implicated in the development of cognitive deficits and sleep/wake architecture disturbances in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Indirect-acting muscarinic cholinergic receptor agonists, such as acetylcholinesterase inhibitors (AChEIs), remain the only FDA-approved treatments for the cognitive impairments observed in AD that target the cholinergic system. Novel direct-acting muscarinic cholinergic receptor agonists also improve cognitive performance in young and aged preclinical species and are currently under clinical development for AD. However, little is known about the effects of direct-acting muscarinic cholinergic receptor agonists on disruptions of sleep/wake architecture and arousal observed in nonpathologically aged rodents, nonhuman primates, and clinical populations. The purpose of the present study was to provide the first assessment of the effects of the direct-acting M1/M4-preferring muscarinic cholinergic receptor agonist xanomeline on sleep/wake architecture and arousal in young and nonpathologically aged mice, in comparison with the AChEI donepezil, when dosed in either the active or inactive phase of the circadian cycle. Xanomeline produced a robust reversal of both wake fragmentation and disruptions in arousal when dosed in the active phase of nonpathologically aged mice. In contrast, donepezil had no effect on either age-related wake fragmentation or arousal deficits when dosed during the active phase. When dosed in the inactive phase, both xanomeline and donepezil produced increases in wake and arousal and decreases in nonrapid eye movement sleep quality and quantity in nonpathologically aged mice. Collectively, these novel findings suggest that direct-acting muscarinic cholinergic agonists such as xanomeline may provide enhanced wakefulness and arousal in nonpathological aging, MCI, and AD patient populations.


Asunto(s)
Nivel de Alerta , Agonistas Muscarínicos , Trastornos Neurocognitivos , Receptor Muscarínico M1 , Receptor Muscarínico M4 , Sueño , Animales , Ratones , Acetilcolinesterasa/metabolismo , Nivel de Alerta/efectos de los fármacos , Nivel de Alerta/fisiología , Colinérgicos/farmacología , Colinérgicos/uso terapéutico , Donepezilo/farmacología , Donepezilo/uso terapéutico , Agonistas Muscarínicos/farmacología , Agonistas Muscarínicos/uso terapéutico , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/metabolismo , Tiadiazoles/farmacología , Tiadiazoles/uso terapéutico , Vigilia/efectos de los fármacos , Vigilia/fisiología , Sueño/efectos de los fármacos , Sueño/fisiología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Trastornos Neurocognitivos/tratamiento farmacológico , Trastornos Neurocognitivos/metabolismo
4.
J Virol ; 95(17): e0055521, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34105995

RESUMEN

Three prime repair exonuclease 1 (TREX1) is the most abundant 3'→5' exonuclease in mammalian cells. It has been suggested that TREX1 degrades HIV-1 DNA to enable the virus to evade the innate immune system. However, the exact role of TREX1 during early steps of HIV-1 infection is not clearly understood. In this study, we report that HIV-1 infection is associated with upregulation, perinuclear accumulation, and nuclear localization of TREX1. However, TREX1 overexpression did not affect reverse transcription or nuclear entry of the virus. Surprisingly, HIV-1 DNA integration was increased in TREX1-overexpressing cells, suggesting a role of the exonuclease in the post-nuclear entry step of infection. Accordingly, preintegration complexes (PICs) extracted from TREX1-overexpressing cells retained higher levels of DNA integration activity. TREX1 depletion resulted in reduced levels of proviral integration, and PICs formed in TREX1-depleted cells retained lower DNA integration activity. Addition of purified TREX1 to PICs also enhanced DNA integration activity, suggesting that TREX1 promotes HIV-1 integration by stimulating PIC activity. To understand the mechanism, we measured TREX1 exonuclease activity on substrates containing viral DNA ends. These studies revealed that TREX1 preferentially degrades the unprocessed viral DNA, but the integration-competent 3'-processed viral DNA remains resistant to degradation. Finally, we observed that TREX1 addition stimulates the activity of HIV-1 intasomes assembled with the unprocessed viral DNA but not that of intasomes containing the 3'-processed viral DNA. These biochemical analyses provide a mechanism by which TREX1 directly promotes HIV-1 integration. Collectively, our study demonstrates that HIV-1 infection upregulates TREX1 to facilitate viral DNA integration. IMPORTANCE Productive HIV-1 infection is dependent on a number of cellular factors. Therefore, a clear understanding of how the virus exploits the cellular machinery will identify new targets for inhibiting HIV-1 infection. The three prime repair exonuclease 1 (TREX1) is the most active cellular exonuclease in mammalian cells. It has been reported that TREX1 prevents accumulation of HIV-1 DNA and enables the virus to evade the host innate immune response. Here, we show that HIV-1 infection results in the upregulation, perinuclear accumulation, and nuclear localization of TREX1. We also provide evidence that TREX1 promotes HIV-1 integration by preferentially degrading viral DNAs that are incompatible with chromosomal insertion. These observations identify a novel role of TREX1 in a post-nuclear entry step of HIV-1 infection.


Asunto(s)
ADN Viral/metabolismo , Exodesoxirribonucleasas/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Inmunidad Innata/inmunología , Fosfoproteínas/metabolismo , Integración Viral , Replicación Viral , Núcleo Celular , ADN Viral/genética , Exodesoxirribonucleasas/genética , Células HEK293 , Infecciones por VIH/genética , Células HeLa , Humanos , Fosfoproteínas/genética
5.
J Biol Chem ; 296: 100787, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34015332

RESUMEN

The dopamine transporter (DAT) is essential for the reuptake of the released neurotransmitter dopamine (DA) in the brain. Psychostimulants, methamphetamine and cocaine, have been reported to induce the formation of DAT multimeric complexes in vivo and in vitro. The interpretation of DAT multimer function has been primarily in the context of compounds that induce structural and functional modifications of the DAT, complicating the understanding of the significance of DAT multimers. To examine multimerization in the absence of DAT ligands as well as in their presence, we developed a novel, optogenetic fusion chimera of cryptochrome 2 and DAT with an mCherry fluorescent reporter (Cry2-DAT). Using blue light to induce Cry2-DAT multimeric protein complex formation, we were able to simultaneously test the functional contributions of DAT multimerization in the absence or presence of substrates or inhibitors with high spatiotemporal precision. We found that blue light-stimulated Cry2-DAT multimers significantly increased IDT307 uptake and MFZ 9-18 binding in the absence of ligands as well as after methamphetamine and nomifensine treatment. Blue light-induced Cry2-DAT multimerization increased colocalization with recycling endosomal marker Rab11 and had decreased presence in Rab5-positive early endosomes and Rab7-positive late endosomes. Our data suggest that the increased uptake and binding results from induced and rapid trafficking of DAT multimers to the plasma membrane. Our data suggest that DAT multimers may function to help maintain DA homeostasis.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina/metabolismo , Animales , Transporte Biológico , Membrana Celular/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Expresión Génica , Células HEK293 , Humanos , Neuronas/metabolismo , Optogenética , Multimerización de Proteína
6.
Cell Physiol Biochem ; 55(2): 141-159, 2021 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33770425

RESUMEN

BACKGROUND/AIMS: Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that binds to the antioxidant response element(s) (ARE) in target gene promoters, enabling oxidatively stressed cells to respond in order to restore redox homeostasis. Post-translational modifications (PTMs) that mediate activation of Nrf2, in the cytosol and its release from Keap1, have been extensively studied but PTMs that impact its biology after activation are beginning to emerge. In this regard, PTMs like acetylation, phosphorylation, ubiquitination and sumoylation contribute towards the Nrf2 subcellular localization, and its transactivation function. We previously demonstrated that Nrf2 traffics to the promyelocytic leukemia-nuclear bodies (PML-NB), where it is a target for modification by small ubiquitin-like modifier (SUMO) proteins (sumoylation), but the site(s) for SUMO conjugation have not been determined. In this study, we aim to identify SUMO-2 conjugation site(s) and explore the impact, sumoylation of the site(s) have on Nrf2 stability, nuclear localization and transcriptional activation of its target gene expression upon oxidative stress. METHODS: The putative SUMO-binding sites in Nrf2 for human isoform1 (NP_006155.2) and mouse homolog (NP_035032.1) were identified using a computer-based SUMO-predictive software (SUMOplot™). Site-directed mutagenesis, immunoblot analysis, and ARE-mediated reporter gene assays were used to assess the impact of sumoylation on these site(s) in vitro. Effect of mutation of these sumoylation sites of Nrf2 on expression of Heme Oxygenase1 (HO-1) was determined in HEK293T cell. RESULTS: Eight putative sumoylation sites were identified by SUMOplot™ analysis. Out of the eight predicted sites only one 532LKDE535 of human (h) and its homologous 524LKDE527 of mouse (m) Nrf2, exactly matches the SUMO-binding consensus motif. The other high probability SUMO-acceptor site identified was residue K110, in the motifs 109PKSD112 and 109PKQD112 of human and mouse Nrf2, respectively. Mutational analysis of putative sumoylation sites (human (h)/mouse (m)K110, hK533 and mK525) showed that these residues are needed for SUMO-2 conjugation, nuclear localization and ARE driven transcription of reporter genes and the endogenous HO-1 expression by Nrf2. These residues also stabilized Nrf2, as evident from shorter half-lives of the mutant protein compared to wild-type Nrf2. CONCLUSION: Our findings indicate that SUMO-2mediated sumoylation of K110 and K533 in human Nrf2 regulates in part its transcriptional activity by enhancing its stabilization and nuclear localization.


Asunto(s)
Factor 2 Relacionado con NF-E2/metabolismo , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/fisiología , Sitios de Unión , Técnica del Anticuerpo Fluorescente , Células HEK293 , Humanos , Factor 2 Relacionado con NF-E2/genética , Estabilidad Proteica , Sumoilación
7.
FEBS Lett ; 592(19): 3274-3285, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30179249

RESUMEN

The mechanisms by which exosomes (nano-vesicular messengers of cells) are taken up by recipient cells are poorly understood. We hypothesized that histones associated with these nanoparticles are the ligands which facilitate their interaction with cell surface syndecan-4 (SDC4) to mediate their uptake. We show that the incubation with fetuin-A (exosome-associated proteins) and histones mediates the uptake of exosomes that are normally not endocytosed. Similarly, hydroxyapatite-nanoparticles incubated with fetuin-A and histones (FNH) are internalized by tumor cells, while nanoparticles incubated with fetuin-A alone (FN) are not. The uptake of exosomes and FNH, both of which move to the perinuclear region of the cell, is attenuated in SDC4-knockdown cells. Data show that FNH can compete with exosomes for uptake and that both use SDC4 as uptake receptors.


Asunto(s)
Durapatita/metabolismo , Exosomas/metabolismo , Histonas/metabolismo , Nanopartículas/química , Sindecano-4/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Durapatita/química , Endocitosis , Espacio Extracelular/metabolismo , Humanos , Ligandos , Microscopía Confocal , Neoplasias/metabolismo , Neoplasias/patología , Células PC-3 , Interferencia de ARN , Sindecano-4/genética , alfa-2-Glicoproteína-HS/genética , alfa-2-Glicoproteína-HS/metabolismo
8.
Cancer Lett ; 411: 136-149, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-28965853

RESUMEN

Activation of the Hedgehog (Hh) pathway effector GLI1 is linked to tumorigenesis and invasiveness in a number of cancers, with targeting of GLI1 by small molecule antagonists shown to be effective. We profiled a collection of GLI antagonists possessing distinct mechanisms of action for efficacy in phenotypic models of inflammatory and non-inflammatory breast cancer (IBC and non-IBC) that we showed expressed varying levels of Hh pathway mediators. Compounds GANT61, HPI-1, and JK184 decreased cell proliferation, inhibited GLI1 mRNA expression and decreased the number of colonies formed in TN-IBC (SUM149) and TNBC (MDA-MB-231 and SUM159) cell lines. In addition, GANT61 and JK184 significantly down-regulated GLI1 targets that regulate cell cycle (cyclin D and E) and apoptosis (Bcl2). GANT61 reduced SUM149 spheroid growth and emboli formation, and in orthotopic SUM149 tumor models significantly decreased tumor growth. We successfully utilized phenotypic profiling to identify a subset of GLI1 antagonists that were prioritized for testing in in vivo models. Our results indicated that GLI1 activation in TN-IBC as in TNBC, plays a vital role in promoting cell proliferation, motility, tumor growth, and formation of tumor emboli.


Asunto(s)
Compuestos Heterocíclicos con 2 Anillos/farmacología , Neoplasias Inflamatorias de la Mama/tratamiento farmacológico , Piridinas/farmacología , Pirimidinas/farmacología , Tiazoles/farmacología , Proteína con Dedos de Zinc GLI1/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Neoplasias Inflamatorias de la Mama/metabolismo , Neoplasias Inflamatorias de la Mama/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Terapia Molecular Dirigida , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cancer Lett ; 337(1): 77-89, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23689139

RESUMEN

Although there is no standard treatment protocol for inflammatory breast cancer (IBC), multi-modality treatment has improved survival. In this study we profiled the NCI approved oncology drug set in a qHTS format to identify those that are efficacious in basal type and ErbB2 overexpressing IBC models. Further, we characterized the sensitivity of an acquired therapeutic resistance model to the oncology drugs. We observed that lapatinib-induced acquired resistance in SUM149 cells led to cross-resistance to other targeted- and chemotherapeutic drugs. Removal of the primary drug to which the model was developed led to re-sensitization to multiple drugs to a degree comparable to the parental cell line; this coincided with the cells regaining the ability to accumulate ROS and reduced expression of anti-apoptotic factors and the antioxidant SOD2. We suggest that our findings provide a unique IBC model system for gaining an understanding of acquired therapeutic resistance and the effect of redox adaptation on anti-cancer drug efficacy.


Asunto(s)
Antineoplásicos/farmacología , Ensayos Analíticos de Alto Rendimiento , Neoplasias Inflamatorias de la Mama/tratamiento farmacológico , Quinazolinas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Lapatinib , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA