Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biol Lett ; 20(3): 20230385, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38503345

RESUMEN

Heteroplasmy, the presence of multiple mitochondrial DNA (mtDNA) haplotypes within cells of an individual, is caused by mutation or paternal leakage. However, heteroplasmy is usually resolved to homoplasmy within a few generations because of germ-line bottlenecks; therefore, instances of heteroplasmy are limited in nature. Here, we report heteroplasmy in the ricefish species Oryzias matanensis, endemic to Lake Matano, an ancient lake in Sulawesi Island, in which one individual was known to have many heterozygous sites in the mitochondrial NADH dehydrogenase subunit 2 (ND2) gene. In this study, we cloned the ND2 gene for some additional individuals with heterozygous sites and demonstrated that they are truly heteroplasmic. Phylogenetic analysis revealed that the extra haplotype within the heteroplasmic O. matanensis individuals clustered with haplotypes of O. marmoratus, a congeneric species inhabiting adjacent lakes. This indicated that the heteroplasmy originated from paternal leakage due to interspecific hybridization. The extra haplotype was unique and contained two non-synonymous substitutions. These findings demonstrate that this hybridization-driven heteroplasmy was maintained across generations for a long time to the extent that the extra mitochondria evolved within the new host.


Asunto(s)
Heteroplasmia , Oryzias , Humanos , Animales , Lagos , Filogenia , Oryzias/genética , ADN Mitocondrial/genética
2.
Genes Genet Syst ; 97(5): 221-227, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36464279

RESUMEN

Physiological responses to environmental changes play important roles in adaptive evolution. In particular, homeostatic regulatory systems that maintain constant circulating glucose levels are crucial in animals. However, variation in circulating glucose levels and the genetic effects on phenotypic variation in natural populations remain to be clarified. Here, we investigated the hemolymph glucose levels in natural populations of Drosophila melanogaster and its sibling species, D. simulans, in Japan. We quantified hemolymph glucose concentrations in third instar larvae of 27 lines for each species, which were reared on either glucose-free or glucose-rich food. In both species, genetic variation was not a major component of phenotypic variation on either glucose-free or glucose-rich food. The hemolymph glucose concentrations were much higher in D. simulans than in D. melanogaster. Genetic variance was larger in D. simulans than in D. melanogaster. The observed differences between the two species may be associated with the much more recent colonization history of D. simulans populations in Japan and/or the tolerance to environmental stresses. Our findings suggest that natural selection acting on hemolymph glucose levels in D. melanogaster is different from that in D. simulans.


Asunto(s)
Drosophila melanogaster , Drosophila simulans , Animales , Drosophila melanogaster/genética , Drosophila simulans/genética , Drosophila/genética , Hemolinfa , Selección Genética , Especificidad de la Especie
3.
Zoolog Sci ; 39(5): 453-458, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36205366

RESUMEN

Freshwater halfbeaks of the genus Nomorhamphus (Zenarchopteridae) uniquely diversified on Sulawesi Island, where tectonic movements have been very active since the Pliocene. Most species of this genus have quite limited distributions, which indicates that geographic isolations have contributed to their diversification. In this study, we demonstrated that secondary contacts and resultant admixtures between long-isolated species/populations may have also been important. We found that the mitochondrial phylogeny of a group of Nomorhamphus in Southeast Sulawesi was discordant with the nuclear phylogeny. Most notably, individuals in the upper and lower streams of the Moramo River, a small river in this region, clustered with each other in the mitochondrial phylogeny but not in the nuclear phylogeny; in the latter, the lower-stream individuals formed a clade with individuals in the Anduna River, a different river with no present water connection to the Moramo River. Phylogenetic network and population structure analyses using genomic data obtained from RNA-seq revealed that the lower-stream Moramo population admixed with the upper-stream Moramo lineage in ancient times. These findings indicate that the observed mito-nuclear discordance was caused by mitochondrial introgression and not incomplete lineage sorting. The phylogenetic network also revealed several other admixtures between ancient lineages. Repeated admixtures were also evidenced by topological incongruence in population trees estimated using the RNA-seq data. We propose that activities of many fault systems dissecting Southeast Sulawesi caused repeated secondary contact.


Asunto(s)
Agua Dulce , Mitocondrias , Animales , ADN Mitocondrial/genética , Indonesia , Mitocondrias/genética , Filogenia , Agua
4.
J Evol Biol ; 34(11): 1767-1780, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34532915

RESUMEN

An increasing volume of empirical studies demonstrated that hybridization between distant lineages may have promoted speciation in various taxa. However, the timing, extent and direction of introgressive hybridization remain unknown in many cases. Here, we report a possible case in which repeated hybridization promoted divergence of Oryzias ricefishes (Adrianichthyidae) on Sulawesi, an island of Wallacea. Four Oryzias species are endemic to the Malili Lake system in central Sulawesi, which is composed of five tectonic lakes; of these, one lake is inhabited by two species. Morphological and population genomic analyses of genome-wide single-nucleotide polymorphisms revealed that these two sympatric species are phylogenetically sister to but substantially reproductively isolated from each other. Analyses of admixture and comparison of demographic models revealed that the two sympatric species experienced several substantial introgressions from outgroup populations that probably occurred soon after they had secondary contact with each other in the lake. However, the ratio of migrants from the outgroups was estimated to be different between the two species, which is consistent with the hypothesis that these introgressions aided their divergence or prevented them from forming a hybrid swarm. Repeated lake fragmentations and fusions may have promoted diversification of this freshwater fish species complex that is endemic to this ancient lake system.


Asunto(s)
Hibridación Genética , Lagos , Animales , Peces , Especiación Genética , Filogenia , Simpatría
6.
Ecol Evol ; 9(11): 6389-6398, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31236229

RESUMEN

Although there are many examples of color evolution potentially driven by sensory drive, only few studies have examined whether distinct species inhabiting the same environments evolve similar body colors via shared sensory mechanisms. In this study, we tested whether two sympatric freshwater fish taxa, halfbeaks of the genus Nomorhamphus and ricefishes of the genus Oryzias in Sulawesi Island, converge in both body color and visual sensitivity. After reconstructing the phylogeny separately for Nomorhamphus and Oryzias using transcriptome-wide sequences, we demonstrated positive correlations of body redness between these two taxa across environments, even after phylogenetic corrections, which support convergent evolution. However, substantial differences were observed in the expression profiles of opsin genes in the eyes between Nomorhamphus and Oryzias. Particularly, the expression levels of the long wavelength-sensitive genes were negatively correlated between the taxa, indicating that they have different visual sensitivities despite living in similar light environments. Thus, the convergence of body colorations between these two freshwater fish taxa was not accompanied by convergence in opsin sensitivities. This system presents a case in which body color convergence can occur between sympatric species via different mechanisms.

7.
Gene ; 686: 141-145, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30399425

RESUMEN

Gene duplication could promote phenotypic and genetic adaptation to various environments. To understand the effects of gene duplication on transcriptional regulation associated with environmental changes, we focused on the starch hydrolysis pathway, in which amylase enzymes together with maltase enzymes hydrolyze starch into glucose. Drosophila genomes involve ten duplicated Maltase genes. We examined the levels of transcription of the nine of these genes in 36 lines of Drosophila melanogaster collected from a natural population. In the investigated population, the levels of transcription were different between the two dietary carbohydrate sources, glucose and starch. At the transcriptional level, a single Maltase gene, which transcribes the specific Maltase transcripts, worked together with an Amylase gene in the pathway. The three of nine genes responded to carbohydrate changes, and the degree of the response was similar to Amylase gene. Our results suggest that gene duplication could increase capacity of the transcriptional regulation associated with environmental changes.


Asunto(s)
Proteínas de Drosophila , Duplicación de Gen , Transcripción Genética/fisiología , alfa-Glucosidasas , Amilasas/biosíntesis , Amilasas/genética , Animales , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Drosophila melanogaster , Especificidad de la Especie , alfa-Glucosidasas/biosíntesis , alfa-Glucosidasas/genética
8.
Ecol Evol ; 8(19): 9590-9599, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30386559

RESUMEN

Transposable elements not only can change genomic positions and disperse across the gene pool, but also can jump to another species through horizontal transmission. Of late, the P element, a DNA transposon in insects, was shown to cross the genetic boundary from Drosophila melanogaster to D. simulans in Europe around 2006. To understand the dynamics of transposable elements, especially in the early stages of invasion, we examined 63 lines of D. simulans from 11 natural populations in Japan established in 1976-2015. Based on PCR analyses, P elements were demonstrated to exist in Japan in 2008 and later. One copy of the full-length P element was identified and mapped to a site on chromosome 3 L in a genome. All of 18 copies of P elements examined shared "A" at the nucleotide position 2040, which is representative of the direct descendants of the original P element that invaded in D. simulans. We also found that some lines having P elements can induce intensive gonadal dysgenesis in D. simulans at 29°C. Our present results imply that P elements in D. simulans arrived at the east end of Asia just a few years later than or almost simultaneously to the initial invasion in Europe, Africa, and North America, suggesting a more astonishingly rapid spread than previously assumed.

9.
Genetica ; 143(3): 271-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25633100

RESUMEN

Evaluation of relative contribution of natural selection and stochastic processes to population differentiation has been of great interest in evolutionary biology. In a damselfly, Ischnura senegalensis, females show color dimorphism (gynochrome vs. androchrome), and color-morph frequencies are known to greatly vary among local populations within Okinawa Island, a small island of Ryukyu Archipelago, Japan. In this study, to examine the effects of natural selection and stochastic processes on the within-island variation in color-morph frequencies, we compared the degree of population differentiation at the color-morph locus with that at a mitochondrial DNA region and ten nuclear microsatellite loci. F ST values at the neutral loci were close to zero, indicating presence of sufficient gene flow (dispersal of adult individuals) between the local populations. In contrast, F ST values at the color-morph locus were significantly different from zero. These results suggest that variation in female color-morph frequencies observed among local populations in Okinawa Island has been caused by divergent selection acting on the phenotype and/or genes tightly linked with the color locus.


Asunto(s)
Evolución Biológica , Odonata/genética , Pigmentación/genética , Selección Genética , Animales , ADN Mitocondrial/genética , Femenino , Flujo Génico , Sitios Genéticos , Genética de Población , Genotipo , Islas , Japón , Masculino , Repeticiones de Microsatélite , Fenotipo , Análisis de Secuencia de ADN
10.
Ecol Evol ; 4(11): 2228-38, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25360263

RESUMEN

Pinus krempfii Lecomte is a morphologically and ecologically unique pine, endemic to Vietnam. It is regarded as vulnerable species with distribution limited to just two provinces: Khanh Hoa and Lam Dong. Although a few phylogenetic studies have included this species, almost nothing is known about its genetic features. In particular, there are no studies addressing the levels and patterns of genetic variation in natural populations of P. krempfii. In this study, we sampled 57 individuals from six natural populations of P. krempfii and analyzed their sequence variation in ten nuclear gene regions (approximately 9 kb) and 14 mitochondrial (mt) DNA regions (approximately 10 kb). We also analyzed variation at seven chloroplast (cp) microsatellite (SSR) loci. We found very low haplotype and nucleotide diversity at nuclear loci compared with other pine species. Furthermore, all investigated populations were monomorphic across all mitochondrial DNA (mtDNA) regions included in our study, which are polymorphic in other pine species. Population differentiation at nuclear loci was low (5.2%) but significant. However, structure analysis of nuclear loci did not detect genetically differentiated groups of populations. Approximate Bayesian computation (ABC) using nuclear sequence data and mismatch distribution analysis for cpSSR loci suggested recent expansion of the species. The implications of these findings for the management and conservation of P. krempfii genetic resources were discussed.

11.
Gene ; 552(2): 239-45, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25241383

RESUMEN

When a population size is reduced, genetic drift may fix slightly deleterious mutations, and an increase in nonsynonymous substitution is expected. It has been suggested that past aridity has seriously affected and decreased the populations of cichlid fishes in Lake Victoria, while geographical studies have shown that the water levels in Lake Tanganyika and Lake Malawi have remained fairly constant. The comparably stable environments in the latter two lakes might have kept the populations of cichlid fishes large enough to remove slightly deleterious mutations. The difference in the stability of cichlid fish population sizes between Lake Victoria and the Lakes Tanganyika and Malawi is expected to have caused differences in the nonsynonymous/synonymous ratio, ω (=dN/dS), of the evolutionary rate. Here, we estimated ω and compared it between the cichlids of the three lakes for 13 mitochondrial protein-coding genes using maximum likelihood methods. We found that the lineages of the cichlids in Lake Victoria had a significantly higher ω for several mitochondrial loci. Moreover, positive selection was indicated for several codons in the mtDNA of the Lake Victoria cichlid lineage. Our results indicate that both adaptive and slightly deleterious molecular evolution has taken place in the Lake Victoria cichlids' mtDNA genes, whose nonsynonymous sites are generally conserved.


Asunto(s)
Cíclidos/genética , ADN Mitocondrial/genética , Proteínas de Peces/genética , Sustitución de Aminoácidos , Animales , Genética de Población , Lagos , Funciones de Verosimilitud , Mutación , Filogenia
12.
Ecol Evol ; 3(7): 2251-61, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23919167

RESUMEN

Inference of genetic structure and demographic history is fundamental issue in evolutionary biology. We examined the levels and patterns of genetic variation of a widespread mangrove species in the Indo-West Pacific region, Bruguiera gymnorrhiza, using ten nuclear gene regions. Genetic variation of individual populations covering its distribution range was low, but as the entire species it was comparable to other plant species. Genetic differentiation among the investigated populations was high. They could be divided into two genetic clusters: the West and East clusters of the Malay Peninsula. Our results indicated that these two genetic clusters derived from their ancestral population whose effective size of which was much larger compared to the two extant clusters. The point estimate of speciation time between B. gymnorrhiza and Bruguiera sexangula was two times older than that of divergence time between the two clusters. Migration from the West cluster to the East cluster was much higher than the opposite direction but both estimated migration rates were low. The past Sundaland and/or the present Malay Peninsula are likely to prevent gene flow between the West and East clusters and function as a geographical or land barrier.

13.
Ecol Evol ; 2(7): 1663-75, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22957170

RESUMEN

Distribution of tropical rainforests in Southeastern Asia has changed over geo-logical time scale, due to movement of tectonic plates and/or global climatic changes. Shorea parvifolia is one of the most common tropical lowland rainforest tree species in Southeastern Asia. To infer population structure and demographic history of S. parvifolia, as indicators of temporal changes in the distribution and extent of tropical rainforest in this region, we studied levels and patterns of nucleotide polymorphism in the following five nuclear gene regions: GapC, GBSSI, PgiC, SBE2, and SODH. Seven populations from peninsular Malaysia, Sumatra, and eastern Borneo were included in the analyses. STRUCTURE analysis revealed that the investigated populations are divided into two groups: Sumatra-Malay and Borneo. Furthermore, each group contained one admixed population. Under isolation with migration model, divergence of the two groups was estimated to occur between late Pliocene (2.6 MYA) and middle Pleistocene (0.7 MYA). The log-likelihood ratio tests of several demographic models strongly supported model with population expansion and low level of migration after divergence of the Sumatra-Malay and Borneo groups. The inferred demographic history of S. parvifolia suggested the presence of a scarcely forested land bridge on the Sunda Shelf during glacial periods in the Pleistocene and predominance of tropical lowland rainforest at least in Sumatra and eastern Borneo.

14.
Mol Ecol ; 21(19): 4681-94, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22891783

RESUMEN

The Andricus mukaigawae complex of oak gall wasps is composed of cyclically parthenogenetic species: A. mukaigawae and Andricus kashiwaphilus, and a parthenogenetic species, Andricus pseudoflos. The component species differ in life history, host plant, karyotype, and asexual gall shape, although little difference is found in the external morphology of asexual adults. To understand the speciation history of this species complex, DNA sequences of one mitochondrial region and nine nuclear gene regions were investigated. The genetic relationship among the species suggested that a loss of sex occurred after host shift. Unexpectedly, two or three distinct groups in the parthenogenetic species, A. pseudoflos, were revealed by both mitochondrial and nuclear DNA data. Gene flow in nuclear genes from the species not infected by Wolbachia (A. kashiwaphilus) to the species infected by it (A. mukaigawae) was suggested by a method based on coalescent simulations. On the other hand, gene flow in mitochondrial genes was suggested to be in the opposite direction. These findings indicate possible involvement of Wolbachia infection in the speciation process of the A. mukaigawae complex.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/genética , Especiación Genética , Quercus/parasitología , Avispas/clasificación , Animales , Teorema de Bayes , Flujo Génico , Variación Genética , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Partenogénesis , Filogenia , Análisis de Secuencia de ADN , Avispas/genética , Avispas/microbiología , Wolbachia
15.
PLoS One ; 5(10): e13477, 2010 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-20976106

RESUMEN

Transglutaminase (TG) plays important and diverse roles in mammals, such as blood coagulation and formation of the skin barrier, by catalyzing protein crosslinking. In invertebrates, TG is known to be involved in immobilization of invading pathogens at sites of injury. Here we demonstrate that Drosophila TG is an important enzyme for cuticle morphogenesis. Although TG activity was undetectable before the second instar larval stage, it dramatically increased in the third instar larval stage. RNA interference (RNAi) of the TG gene caused a pupal semi-lethal phenotype and abnormal morphology. Furthermore, TG-RNAi flies showed a significantly shorter life span than their counterparts, and approximately 90% of flies died within 30 days after eclosion. Stage-specific TG-RNAi before the third instar larval stage resulted in cuticle abnormality, but the TG-RNAi after the late pupal stage did not, indicating that TG plays a key role at or before the early pupal stage. Immediately following eclosion, acid-extractable protein from wild-type wings was nearly all converted to non-extractable protein due to wing maturation, whereas several proteins remained acid-extractable in the mature wings of TG-RNAi flies. We identified four proteins--two cuticular chitin-binding proteins, larval serum protein 2, and a putative C-type lectin-as TG substrates. RNAi of their corresponding genes caused a lethal phenotype or cuticle abnormality. Our results indicate that TG-dependent protein crosslinking in Drosophila plays a key role in cuticle morphogenesis and sclerotization.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Morfogénesis , Transglutaminasas/metabolismo , Animales , Fenotipo , Interferencia de ARN , Especificidad por Sustrato , Transglutaminasas/genética
16.
J Hered ; 101(1): 26-32, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19793793

RESUMEN

Seasonal environmental changes have the potential to influence the genetic structure of species with a short generation time, such as Drosophila. We previously found the seasonal change in linkage disequilibrium (LD) between the chemoreceptor (Cr) genes in a local Japanese population (Kyoto [KY]). This could be caused by fluctuation in the population size or selection in temporally heterogeneous environments or both. Here, we analyzed the scale of LD between 51 X-linked polymorphisms (10 Cr and 41 non-Cr gene markers) in the 2 seasonal samples from the KY population and an autumn sample from 106 localities in and around Japan (Ja03au). Many of the non-Cr genes have receptor function but fewer functional connections to each other. The magnitude of LD in Ja03au did not significantly differ from that in the KY autumn sample. The lack of local differentiation was confirmed in an autumn sample from another local Japanese population. On the other hand, the magnitude of LD was significantly larger in spring than in autumn in the 2 independent KY samples. This suggests that reduction in the population size during winter increased the magnitude of LD in spring in the mainland population in Japan. Long-distance LD could be a useful measure for assessing seasonal fluctuation in effective population size.


Asunto(s)
Drosophila melanogaster/genética , Desequilibrio de Ligamiento , Estaciones del Año , Animales , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo Genético
17.
Exp Appl Acarol ; 48(4): 273-89, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19184468

RESUMEN

Allothrombium pulvinum Ewing is a common natural enemy of aphids and some other arthropods. So far, there are no studies that have addressed genetic variation of this predatory mite. We investigated genetic variation of A. pulvinum across its whole known range in Iran. A 410 bp portion of the mitochondrial cytochrome c oxidase subunit I gene (coxI) and 797-802 bp portion of the internal transcribed spacer 2 of rDNA (ITS2) were sequenced for 55 individuals from 11 populations, resulting in 12 and 26 haplotypes, respectively. In the coxI region, haplotype and nucleotide diversities varied among populations from 0.00 to 0.90 and from 0.0000 to 0.0110, respectively. In the ITS2 region they varied from 0.20 to 0.91 and from 0.0006 to 0.0023, respectively. For both gene regions the highest haplotype and nucleotide diversities were detected in population Mahmoud Abad from northern Iran. Statistically significant population differentiation (F (ST)) was detected in most pair-wise population comparisons. The results of population differentiation for both gene regions were generally congruent indicating that A. pulvinum from Iran consists of genetically different populations. This suggests that A. pulvinum comprises at least two geographically distinct populations or even more than one species. This study is an initial step towards understanding genetic variation of A. pulvinum, a taxon for which little molecular information is available. More intensive sampling and analysis of additional DNA regions are necessary for more detailed classification of this taxon.


Asunto(s)
Ácaros y Garrapatas/genética , Complejo IV de Transporte de Electrones/genética , Proteínas Mitocondriales/genética , Polimorfismo Genético , Animales , ADN Espaciador Ribosómico/química , Complejo IV de Transporte de Electrones/química , Geografía , Haplotipos , Irán , Proteínas Mitocondriales/química , Datos de Secuencia Molecular
18.
Genes Genet Syst ; 84(4): 277-86, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20057165

RESUMEN

In mangrove species the past geomorphic changes in coastal regions and reproductive systems are important factors of their distribution and genetic structure of populations. However, very little is known about the levels of genetic variation of Rhiozophora species in Southeast Asia. In this study, we surveyed levels and patterns of genetic variation as well as population structure of two sympatric mangrove species, Rhizophora apiculata and R. mucronata in Thailand, using five nuclear genes and two cpDNA regions. In all investigated DNA regions, nucleotide variation within species was low, while nucleotide divergence between the two species was considerable. The nuclear genes evolved 10 times faster than the cpDNA regions. In both R. apiculata and R. mucronata, significant positive F(IS) values were found, indicating deviation from Hardy-Weinberg proportions and a deficiency of heterozygotes. In both species, we found significant genetic differentiation between populations. However, the pattern of population differentiation (F(ST)) of R. apiculata differed from that of R. mucronata. Our results suggest that the two investigated species have different demographic history, even though they are sympatric and have similar reproductive systems.


Asunto(s)
Núcleo Celular/genética , ADN de Plantas/genética , Evolución Molecular , Variación Genética , Rhizophoraceae/genética , Especificidad de la Especie , Tailandia
19.
Genes Genet Syst ; 83(1): 55-66, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18379134

RESUMEN

Larch (Larix Mill.) is one of the most widely distributed tree genera in Eurasia. To determine population structure and to verify classification of five species and three varieties of the Eurasian Larix species, we investigated levels and patterns of nucleotide variation of two nuclear gene regions: the 4-coumarate coenzyme A ligase (4CL) and the coumarate 3-hydroxylase (C3H). In the 4CL region nucleotide diversity at silent sites (pi(sil)) varied between 0.0020 in L. gmelinii to 0.0116 in L. gmelinii var. japonica and in the C3H region between 0.0019 in L. kaempferi to 0.0066 in L. gmelinii var. japonica. In both gene regions statistically significant population differentiation (F(ST)) was detected among adjacent refugial populations of some species suggesting limited gene flow and/or long time isolation of some refugial populations. On the other hand, populations of L. sukaczewii from northwestern Russia, which was glaciated 20,000 years ago showed no differentiation. This result is consistent with recent postglacial origin of these populations. Haplotype composition of some of the investigated Eurasian Larix species suggested that they are considerably diverged. Some haplotypes were unique to individual species. Our results indicate that more intensive sampling especially from known refugial regions is necessary for inferring correct classification of Eurasian Larix species and inferring their postglacial migration.


Asunto(s)
Genes de Plantas , Variación Genética , Larix/clasificación , Larix/genética , Filogenia , Asia , Núcleo Celular/genética , ADN de Plantas/metabolismo , Europa (Continente) , Genética de Población , Geografía , Haplotipos , Reacción en Cadena de la Polimerasa , Especificidad de la Especie
20.
Gene ; 412(1-2): 102-9, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18308485

RESUMEN

Evolution of the duplicated genes and regulation in gene expression is of great interest, especially in terms of adaptation. Molecular population genetic and evolutionary studies on the duplicated amylase genes of Drosophila species have suggested that their 5'-flanking (cis-regulatory) regions play an important role in evolution of these genes. For better understanding of evolution of the duplicated amylase genes and gene expression, we studied functional significance of the Amy1 gene of Drosophila kikkawai using in vitro deletion mutagenesis followed by P-element-mediated germline transformation. We found that a 1.6-kb of the 5'-flanking region can produce strikingly higher level of larval amylase activity on starch food compared with that on glucose food. We found two cis-regulatory elements, which increase larval amylase activity on starch food. We also found a larval cis-regulatory element, which responds to the food difference. This food-response element is necessary for the function of the element increasing larval activity on starch food. A 5-bp deletion in a putative GRE caused high amylase activity, indicating a cis-regulatory element decreasing amylase activity. These cis-regulatory elements identified in the 5'-flanking region could be the targets of natural selection.


Asunto(s)
Drosophila/enzimología , Drosophila/genética , Genes de Insecto , alfa-Amilasas/genética , Región de Flanqueo 5' , Animales , Secuencia de Bases , Evolución Biológica , Cartilla de ADN/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Alimentos , Duplicación de Gen , Regulación Enzimológica de la Expresión Génica , Mutagénesis Sitio-Dirigida , Plásmidos/genética , Elementos Reguladores de la Transcripción , Eliminación de Secuencia , Especificidad de la Especie , alfa-Amilasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA